Journal of Organometallic Chemistry, 442 (1992) 83–224 Elsevier Sequoia S.A., Lausanne JOM 22813AS

LANTHANIDES AND ACTINIDES ANNUAL SURVEY COVERING THE YEARS 1987-1989

ROBIN D. ROGERS^{*} and LILLIAN M. ROGERS Department of Chemistry, Northern Illinois University, DeKalb, IL 60115 (U.S.A.)

(Received March 13, 1992)

INTRODUCTION

This review has been restricted to compounds of the lanthanides and actinides containing M-C bonds as defined by Section 29 of Chemical Abstracts. The prelanthanides La and Y have been included with the lanthanides because of their similar size and charge. Abstracts of papers presented at conferences, dissertations and patents have been excluded.

Several abbreviations will be found throughout this review. These include $Cp = \eta^5 - C_5 H_5$, $Cp^* = \eta^5 - C_5 Me_5$, $CpMe = \eta^5 - C_5 H_4 Me^*$, $Cp' = \eta^5 - C_5 H_4 SiMe_3^-$, $Cp'' = \eta^5 - C_5 H_3 (SiMe_3)_2^-$, Ind = indenyl - $C_9 H_7^-$, COT = cyclooctatetraene dianion - $C_8 H_8^{2^-}$, dme = dimethoxyethane, Ar = aryl, Bz = benzoyl - $CH_2 C_6 H_5$.

Several review articles appeared in the period covered by this review. The annual survey in this series covering the year 1981 was published by Ernst and Marks¹ (100 references). Two general reviews were published by Miller covering the years 1986 (178 references)² and 1987 (197 references).³ Winter prepared reviews of Y, La, lanthanide, and actinide compounds containing metal-carbon sigma bonds in 1987 (302 references)⁴, 1988 (358 references),⁵ and 1989 (339 references).⁶ Evans published an account of the organometallic chemistry of the lanthanides in low oxidation states (160 references)⁷ and a review of organosamarium syntheses by metal vapor deposition (69 references).⁸ Organometallic divalent Sm, Eu, and Yb compounds were the subject of a review by Beletskaya and Suleimanov⁹ (108 references) and by Swamy¹⁰ (56 references). Short reports discussing organometallic lanthanide electronic structure (21 references)¹¹ and early lanthanide organometallic compounds (28 references¹², 25 references¹³) appeared in 1988 and 1989. Bulychev prepared a

^{*}Lanthanides and Actinides, Annual Survey covering the years 1984-1986, see J. Organomet. Chem., 416 (1991) 201. Reprints for this Survey are not available.

short review of the structural and catalytic chemistry of Cp,LnCl-aluminum hydrides (28 references).¹⁴ Evans reviewed paramagnetism in organolanthanides (63 references),¹⁵ Kagan the use of organolanthanides in organic chemistry (28 references¹⁶; 29 references¹⁷), and Kahn and Rieke carbonyl coupling reactions using lanthanides and actinides (104 references).¹⁸ Organic derivatives of rare earth elements were reviewed by Bochkarev, et al. in a book.¹⁹ Rothwell published a review of the homogenous activation of C-H bonds by f-metal systems (128 references).20 Marks, et al. reviewed progress in the study of the thermochemistry of 4f and 5f organometallic compounds (49 references).²¹ Orpen, <u>et al.²² tabulated average lengths</u> for 325 different metal-ligand bonds with intraligand distances as determined by both x-ray and neutron diffraction data. A total of 9,802 crystal structures were used to obtain the average values tabulated. Marcalo, et al.²³ derived ligand effective radii for the f-elements by study of the bond lengths in 274 structurally characterized f-element compounds. The derived values were discussed in terms of metal ion oxidation state and ionic radius, coordination geometries, and bonding type. Burns and Bursten²⁴ examined covalency in f-element organometallic complexes by review of theoretical and experimental techniques (136 references).

LANTHANIDES

Cyclopentadienyl and cyclopentadienyl-like compounds

(i) <u>Monocyclopentadienyl compounds</u>. The preparation and crystal structure of $CpNdCl_2(THF)_3$ (Figure 1) was published by Yang, <u>et al</u>.²⁵ The Nd-C separations were reported to average 2.779(9)Å. Schumann reported the synthesis of $CpYbCl(THF)_2$,²⁶ $Cp^*YbCl(THF)_2$,²⁶ CpYbCl(dme),²⁶ $Cp^*YbCl(dme)$,²⁶ and $[Cp^*LuS^tBu(\mu-S^tBu)_2Li(tmeda)]$.²⁷ Zhongsheng, <u>et al</u>.^{28,29} published the crystal structure of $[CpNd(THF)(\mu-Cl)_4Li_2(THF)_4]$ (Figure 2). The average Nd-C distance reported was 2.77Å. The La derivative was established to be isomorphous. The synthesis of the La and Nd derivatives were also reported in reference 30. The X-ray photoelectron spectra of cyclopentenylcyclopentadienyl derivatives of $CeCl_2^+$, $PrCl_2^+$, $NdCl_2^+$ and $SmCl_2^+$ were reported.³¹ Nie, <u>et al</u>.³² prepared and characterized $Cp^LLnCl_2 \cdot nTHF$ (Ln = Nd, Sm, Gd; n = 0, 1, 2) while Wang, <u>et al</u>.³³ reported making cyclopentenylCp and alkylCp compounds $(C_{5}H_{9}C_{5}H_{4})$ LnCl₂ nTHF and $(C_{3}H_{5}C_{5}H_{4})$ LnCl₂ nTHF (Ln = Nd, Sm, Gd; n = 0, 1, 2, 3).

Fig. 1. CpNdCl₂(THF)₃. (Reprinted with permission from <u>Journal</u> <u>of Organometallic Chemistry</u>.)

Fig. 2. [CpNd(THF)(μ-Cl)₄Li₂(THF)₄]. (Reprinted with permission from <u>Inorganica Chimica Acta</u>.)

A Cp^{*}Yb cluster was crystallographically characterized by Zalkin and Berg³⁴ (Figure 3). The compound, $[Yb_50(OEt_2)_2Cp_5^*Cl_8]$, has chloro and oxo bridges. One Yb has two Cp^{*} ligands and one has none. A tetrametallic cluster, $Cp_6^*Yb_4(\mu-F)_4$, was characterized by Andersen, et al.³⁵ (Figure 4). The mixed valence cluster contains two Yb(II) ions with one Cp^{*} and two Yb(III) ions with two Cp^{*} ligands. The Yb(II)-C distances were reported to average 2.65(2)Å, the Yb(III)-C separations 2.62(2)Å.

Fig. 3. [Yb₅O(OEt₂)₂Cp^{*}₅Cl₈]. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Wayda³⁶ published the synthesis of $(Cp^{t}Bu)LuCl_{2}(THF)_{2}$ via the reaction of LuCl₃ with NaCp^tBu in THF. Bruno, <u>et al</u>.³⁷ prepared and crystallographically characterized $Cp^{*}CeI_{2}(THF)_{3}$ (Figure 5; Ce-C(Cp^{*}) = 2.80(3)Å). Also prepared were the La analog and $[Cp^{*}CeCl_{2}(THF)_{x}]_{y}$. Evans, <u>et al</u>.³⁸ studied the reactions of ceric ammonium nitrate with NaCp in THF and prepared CpCe(THF).

Fig. 4. $Cp_{\delta}^{*}Yb_{4}(\mu-F)_{4}$. (Reprinted with permission from <u>Journal of</u> the <u>Chemical Society</u>, <u>Chemical Communications</u>.)

Fig. 5. Cp^{*}CeI₂(THF)₃. (Reprinted with permission from <u>Organome-</u> <u>tallics</u>. Copyright 1987 American Chemical Society.)

Ma and Ye^{39,40} reported the synthesis of CpYb(β -dikenato)₂ complexes by reaction of Cp₃Yb with the β -diketone in n-hexane. Elemental, IR, mass spectral and thermal decomposition data were reported for β -dikenato = MeCOCHCOMe, Me₃CCOCHCOCMe₅, MeCOCHCOCF₃, PhCOCHCOMe, SCH=CHCH=CCOCHCOCF₃, OCN(Ph)N=-C(Me)CCOPh. In addition the bis-acetylacetonate complexes, CpLn(acac)₂ (Ln = Nd, Sm, Gd, Dy, Er),⁴¹ the bis-8-hydroxyquinoline,⁴² bis-o-aldehydophenolato,⁴³ and bis-furfuralcoholato⁴³ complexes of CpNd and CpYb and the bis-o-aminophenol complex of CpYb⁴² were reported. Thiele, <u>et al</u>. prepared [Cp₂Co][CpCe-(acac)₃] by the reaction of Cp₃Ce(THF) and Co(acac)₃.⁴⁴

Teuben^{45,46} published the preparation and crystal structure of $Cp^*Ce(2,6-di-^tBu-phenoxide)_2$ (Figure 6). This compound was utilized as a precursor for $Cp^*Ce[CH(SiMe_3)_2]_2$ (Figure 7) and $Cp^*Ce-[N(SiMe_3)_2]_2$ (Figure 8) by reaction with LiCH(SiMe_3)_2 or NaN(SiMe_3)_2, respectively. Both were crystallographically characterized. All three compounds were reported to have secondary agostic interactions between the Ce ion and methyl hydrogen atoms. Bonding parameters include: for the 2,6-di-^tBu-phenoxide compound, Ce-C(Cp^{*}) = 2.76(1)Å; for the CH(SiMe_3)_2 compound, Ce-C(Cp^{*}) = 2.53(2)Å; and for the N(SiMe_3)_2 compound, Ce-C(Cp^{*}) = 2.77(1)Å.

Fig. 6. Cp^{*}Ce(2,6-di-^tBu-phenoxide)₂. (Reprinted with permission from <u>Journal of the Chemical Society, Chemical Communi-</u> cations.)

Fig. 7. Cp^{*}Ce[CH(SiMe₃)₂]₂. (Reprinted with permission from <u>Orga-</u> <u>nometallics</u>. Copyright 1989 American Chemical Society.)

References p. 211

Fig. 8. Cp^{*}Ce[N(SiMe₃)₂]₂. (Reprinted with permission from <u>Orga-</u> <u>nometallics</u>. Copyright 1989 American Chemical Society.)

The dimeric $[Cp^*Ln(OCMe_3)_2]_2$ (Ln = La, Ce: Figure 9)⁴⁷ were prepared via reaction of $Cp^*_2LnCH(SiMe_3)_2$ with HOCMe_3. Teuben, <u>et</u> <u>al</u>.⁴⁸ also investigated the transmetallation of $LnCl_3(THF)_x$ with LiCp* to produce mono-Cp derivatives. Reaction of LnR_3 with Cp*H generally gave Cp^*_2LnR . Similar compounds were reported by Schaverien, <u>et al</u>.^{49,50} by a different route. Reaction of $Cp^*LaI_2(THF)_3$ with KCH(SiMe_3)_2 in hexane/OEt_2 resulted in Cp*La-[CH(SiMe_3)_2]_2(THF)⁴⁹ (Figure 10). Further treatment with Me_3SiI gave $Cp^*La[CH(SiMe_3)_2]_2$ (Figure 11). When the chloro salt of Lu(III) was utilized, μ -chloro complexes were obtained.⁵¹ Both $Cp^*Lu[CH(SiMe_3)_2](\mu-Cl)_2Li(tmeda)$ (Figure 12) and Cp^*Lu- [CH(SiMe_3)_2]_2(μ -Cl)Li(THF)_3 (Figure 13) were crystallographically characterized.

Fig. 9. [Cp*Ce(OCMe₃)₂]₂. (Reprinted with permission from <u>Journal</u> of Organometallic Chemistry.)

Fig. 10. Cp^{*}La[CH(SiMe₃)₂]₂(THF). (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Fig. 11. Cp^{*}La[CH(SiMe₃)₂]₂. (Reprinted with permission from <u>Polyhedron</u>. Copyright 1989 Pergamon Press plc.)

Fig. 12. Cp^{*}Lu[CH(SiMe₃)₂](µ-Cl)₂Li(tmeda). (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Fig. 13. $Cp^{t}Lu[CH(SiMe_{3})_{2}]_{2}(\mu-C1)Li(THF)_{3}$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

The Cp^{*}Y- σ -aryl compounds, Cp^{*}Y(σ -C₆H₄CH₂NMe₂)₂ (Figure 14) and Cp^{*}Y[σ -C₆H₄CH₂NMe(μ -CH₂)][μ - σ -C₆H₄CH₂NMe(μ -CH₂)]YCp^{*}(THF) (Figure 15) were prepared and crystallographically characterized by Teuben and Spek, <u>et al</u>.⁵² The former was prepared by reaction of Y(σ -C₆H₄CH₂NMe₂)₃ with Cp^{*}H. Thermolysis of this compound gave the latter. The thermolysis pathway was reported to follow activation of an agostic C-H bond.

Fig. 14. Cp^{*}Y(o-C₆H₄CH₂NMe₂)₂. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Fig. 15. $Cp^*Y[o-C_6H_4CH_2NMe(\mu-CH_2)][\mu-o-C_6H_4CH_2NMe(\mu-CH_2)]-YCp^*(THF). (Reprinted with permission from <u>Organo-metallics</u>. Copyright 1989 American Chemical Society.)$

Schumann, <u>et al.</u>⁵³ reported the preparation of Cp^*LnCOT (Ln = Pr, Sm, Gd, Tb, Dy, Er, and Lu) by the reaction of $COTLnCl(THF)_n$ with NaCp^{*} in THF. The crystal structure of M = Lu was determined (Figure 16). The synthesis and crystal structure of $(C_5(CH_2Ph)_5)LuCOT$ (Figure 17) were also published.⁵⁴ The last structure has a centroid-Lu-centroid angle of 167.7°. Teuben, <u>et al.</u>⁵⁵ published the synthesis, IR spectra, and UPS studies of the Y and La derivatives of Cp^{*}LnCOT. The La compound was found to be polymeric in the solid state and the THF adduct Cp^{*}LaCOT(THF) could be isolated.

Fig. 16. Cp^{*}LuCOT. (Reprinted with permission from <u>Organo-</u> <u>metallics</u>. Copyright 1989 American Chemical Society.)

Fig. 17. (C₅(CH₂Ph)₅)LuCOT. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Schumann, et al.⁵⁶ reported the reaction of $Lu(OSO_2CF_3)_3$ with NaCp in THF which gives $CpLu(OSO_2CF_3)_2(THF)_3$ and $Cp_2Lu-(OSO_2CF_3)(THF)$. The crystal structure of the former is presented in Figure 18.

Lobkovskii, <u>et</u> <u>al</u>.⁵⁷ prepared and structurally characterized the polynuclear complex, $[(Cp^tBu_2)LuH(AlH_4)]_4(OEt_2)_2] \cdot OEt_2$. There is a tetrahedral metal core.

Bruno, Brittain, and Hazin⁵⁸ studied the luminescence spectra of halide, alkyl, aryl, ether, nitrile, Cp, Cp^{*}, and COT Ce(III) compounds. Covalancy of up to 20-25% was indicated by the results, increasing in the order: halides < alkyls, aryls < Cp < COT, Cp^{*}.

Fig. 18. CpLu(OSO₂CF₃)₂(THF)₃. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

(ii) <u>Tetra- and triscyclopentadienyl compounds</u>. The tetrakiscyclopentadienyl compounds $Na[Cp_4Ln] \cdot (THF)_n$ (Ln = La, Ce, Nd) and $Na[Cp_4Pr]$ were synthesized and characterized by Thiele, <u>et</u> <u>al</u>.⁵⁹ The compounds are reported to contain three pi and one sigma Cp ligands.

Evans, et al.³⁸ and Thiele, et al.⁴⁴ published the synthesis of Cp₃Ce(THF) from $[NH_4]_2[Ce(NO_3)_6]$ by reaction with NaCp. The compounds $(Cp^tBu)_3Sm$ and $(Cp^tBu)_3La(THF)$ by Wayda³⁶ and $(CpCHMe_2)_3Ce$ by Zverev, et al.⁶⁰ were also prepared. Optimized preparative routes to Cp₃Nd(THF), Cp₃Sm(THF), and Cp₂Yb(dme) are given by Deacon, et al.⁶¹ The structures of Cp₃La (Rebizant, et al.,⁶² Figure 19), Cp₃Yb (Eggers, et al.,⁶³ Figure 20), and (CpMe)₃Yb (Weidlein, et al.,⁶⁴ Figure 21) were crystallographically characterized. The La complex was reported to be a polymer containing one $\mu, \eta^5: \eta^1$ -Cp and two η^5 -Cp's, while the Yb complexes crystallized as discrete molecular units.

Fig. 19. Cp₃La. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 20. Cp_3Yb . (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 21. (CpMe)₃Yb. (Reprinted with permission from <u>Journal</u> of Organometallic Chemistry.)

The mixed Cp compound Cp_2^*CpSm was prepared by Evans and Ulibarri⁶⁵ by reaction of Cp_2^*Sm with excess CpH. Its structure is shown in Figure 22 (Sm-C(Cp^{*}) = 2.770(3)Å; Sm-C(Cp) = 2.738(4)Å). The mixed valence $Cp_2^*Sm(\mu-Cp)SmCp_2^*$ was also prepared and crystallographically characterized (Figure 23). The Cp ligand was found to bridge in an $\eta^5: \eta^2$ fashion.

Borisov, et al.⁶⁶ studied the thermal decomposition of Cp_3Ln (Ln = Y, La, Nd) while Paolucci, Fischer, and Traldi, et al.⁶⁷ published a report detailing the mass spectral fragmentation pattern common to (CpMe)₃Ln (Ln = La, Pr, Nd, Tm, Yb) compounds. Luminescence spectra were reported for some Cp_3Ln compounds.^{58,68}

Qian, <u>et al</u>.⁶⁹ investigated the reduction of olefins with Cp_3Ln/NaH . A decrease in activity was observed to correlate with a decrease in ionic radius of the lanthanide. The compounds Cp_3Ln (Ln = La, Ce, Pr, Nd, Sm, Eu) were utilized with sodium naphthalene in THF to reduce N_2 to ammonia.⁷⁰ The organometallic (CpMe)₃Yb was used as a source of Yb in the growth of highly doped InP:Yb layers by organometallic vapor phase epitaxy.⁷¹

Fig. 22. ${Cp}^*_2 CpSm$. (Reprinted with permission from <u>Journal of</u> <u>the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Fig. 23. $\operatorname{Cp}_{2}^{*}\operatorname{Sm}(\mu-\operatorname{Cp})\operatorname{SmCp}_{2}^{*}$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Several contributions appeared investigating the chemistry of Cp₃Ln adducts, Cp₃LnL_n. Fischer, <u>et al</u>.⁷² gave a detailed account of ¹³⁹La NMR studies of $[Cp_3LaL_n]^q$ (Cp = Cp or CpMe; L = monodentate ligand; n = 0-2; q = 0 or -1). Andersen, <u>et al</u>.⁷³ gave a brief summary of the relative strengths of Cp₃Ln-L interactions (L = THF, N(CH₂CH₂)₃CH, PMe₃, P(OCH₂)₃Et, CNEt). Amberger, <u>et al</u>.^{74,75} studied the electronic structure of Cp₃Ln adducts. Vibronic coupling in Cp₃NdMe(THF) was studied in order to separate the vibronic and electronic transitions in Cp₃Yb(CNC₆H₁₁) and Cp₃YbMe(THF).⁷⁴ Magnetic susceptibility measurements and EPR spectra for Cp₃YbL (L = THF, γ -picoline) were used to determine the spin-orbit coupling constant and crystal field parameters.⁷⁵

Deacon, et al.⁷⁶ studied transmetallation reactions in pyridine, acetonitrile, and ether. The salt TlCp was used to give $Cp_3Ln(pyridine)$ (Ln = Nd, Sm, Eu, Yb) in pyridine and $Cp_3Ln(NCMe)$ (Ln = Nd, Sm, Yb) in acetonitrile. The complex $Cp_3Sm(pyridine)$ was also prepared by ligand exchange, and $Cp_3Eu(THF)$ was synthesized from Eu and HgCp₂ in THF. The crystal structures of $Cp_3Ln(pyridine)$ (M = Sm (Figure 24), Nd)⁷⁷ were determined. The two structures are reported to differ in pyridine coordination and cell packing. Average bonding parameters reported include Sm-C(Cp) = 2.77(1)Å and Nd-C(Cp) = 2.80(1)Å.

Spirlet, <u>et al</u>.^{78,79} reported the crystal structures of $Cp_3La(NC_3H_5)_2$ (Figure 25, La-C(Cp) = 2.86(1)Å)⁷⁸ and $Cp_3Ln(NC_3H_5)$ (Ln = La, Figure 26, La-C(Cp) = 2.830(5)Å; Pr; Yb, Yb-C(Cp) = 2.677(6)Å).⁷⁹ The latter group of three complexes are isostructural. However, only Ln = La and Yb were fully characterized structurally.

Fig. 24. Cp₃Sm(pyridine). (Reprinted with permission from <u>Australian Journal of Chemistry</u>.)

Fig. 25. $Cp_{3}La(NC_{3}H_{5})_{2}$. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 26. Cp₃Ln(NC₃H₅). (Reprinted with permission from <u>Inorganica Chimica Acta</u>.)

.

Schumann reported the reactions of $Cp_2Sm(\mu-Cl)_2Na(dme)$ with LiGeMe₃²⁷ or Cp_3Sm with $NaCl^{27}$ to give $[Cp_3Sm]_2Cl^{-}$. LiN₃ was reported to react with Cp_3Sm in dme to yield $[Li(dme)_3][(Cp_3Sm)_2(\mu-N_3)]$.⁸⁰ The crystal structures of these compounds are shown in Figure 27 $(\mu-Cl)^{27}$ and Figure 28 $(\mu-N_3)$.⁸⁰

Fig. 27. The anion in [Li(dme)₃]{[Cp₃Sm]₂Cl}. (Reprinted with permission from <u>Polyhedron</u>. Copyright 1988 Pergamon Press plc.)

Fig. 28. The anion in $[Li(dme)_3][(Cp_3Sm)_2(\mu-N_3)]$. (Reprinted with permission from <u>Polyhedron</u>. Copyright 1988 Pergamon Press plc.)

Stults and Zalkin⁸¹ investigated the crystal structure of $(CpMe)_{3}Ce(PMe_{3})$ (Figure 29; Ce-C(Cp) = 2.82(4)Å, Ce-P = 3.072(4)Å). Another report with Andersen,⁸² detailed the crystal structures of $(CpMe)_{3}CeL$ (L = quinuclidine, $P(OCH_{2})_{3}CEt$). These compounds are isostructural with their uranium analogs and are described further in the actinide section.

The triscyclopentadienyl alkoxide, $Cp_3Ce(O^iPr)$, was prepared by Marks and Fragala, <u>et al</u>.⁸³ from $Ce(O^iPr)_4$ and $CpSnMe_3$. Its redox properties and electronic structure were discussed. Evans, <u>et al</u>.⁸⁴ prepared the alkoxide, $Cp_3Ce(OCMe_3)$ from $Ce(OCMe_3)(NO_3)_3^-$ (THF)₂ with NaCp and determined its crystal structure (Figure 30, $Ce-C(Cp) = 2.76(2)\dot{A}$).

Bulgakov, <u>et al</u>.⁸⁵ studied the chemiluminescence resulting from the hydrolysis of Cp₃Sm. Gao, <u>et al</u>.⁸⁶ prepared [Li(dme)₃]-[Cp₃Nd(C₆H₅)].

Fig. 29. (CpMe)₃Ce(PMe₃). (Reprinted with permission from <u>Acta Crystallographica</u>.)

Fig. 30. Cp₃Ce(OCMe₃). (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.) (iii) <u>Biscyclopentadienyl compounds with halide and oxygen</u> <u>ligands</u>. Evans⁸⁷ investigated the chemistry of Sm(II) including the synthesis and reactivity of $Cp_2^*Sm(THF)_2$. In a second paper⁸⁸ he reported the preparation and structural characterization of $Cp_2^*Sm(dihydropyran)_2$ (Figure 31, Sm-C(Cp^{*}) = 2.842(4)Å) and $Cp_2^*Sm(tetrahydropyran)$ (Figure 32, Sm-C(Cp^{*}) = 2.816(3)Å) by replacement of the solvent in $Cp_2^*Sm(THF)_2$. Schumann, <u>et al.</u>⁸⁹ published the crystal structure of $Cp_2^*Sm(dme)$ (Figure 33, Sm-C(Cp^{*}) = 2.82(3)Å). Deacon, <u>et al.</u>⁹⁰ prepared the pentadeutero derivative, $(\eta^5-C_5D_5)_2Yb(dme)$, while Weidlein, <u>et al.</u>⁹¹ published a preparative route to (CpMe)_Yb(dme). Andersen, <u>et al.</u>⁹² presented the thermal average molecular structure of Cp_2^*Yb by gas phase electron diffraction. A bent sandwich model was proposed.

Fig. 31. Cp^{*}₂Sm(dihydropyran)₂. (Reprinted with permission from <u>Polyhedron</u>. Copyright 1989 Pergamon Press plc.)

References p. 211

107

Fig. 32. Cp^{*}₂Sm(tetrahydropyran). (Reprinted with permission from <u>Polyhedron</u>. Copyright 1989 Pergamon Press plc.)

Fig. 33. Cp^{*}₂Sm(dme). (Reprinted with permission from <u>Journal</u> of Organometallic <u>Chemistry</u>.)

The formation and crystal structure of $[Cp_{2}^{*}Yb]_{2}(\mu-F)$ appeared (Figure 34).⁹³ The Yb⁺²-F-Yb⁺³ bridge is asymmetric. Deacon, <u>et</u> <u>al</u>.⁹⁴ published the first crystal structure of a phosphine oxide complex of a divalent organolanthanide, Cp₂Yb(OPPh₃)₂ (Figure 35).

Fig. 34. $[Cp_{2}Yb]_{2}(\mu-F)$. (Reprinted with permission from <u>Journal of the Chemical Society, Chemical Communica-</u><u>tions</u>.)

Fig. 35. Cp₂Yb(OPPh₃)₂. (Reprinted with permission from <u>Poly-</u> <u>hedron</u>. Copyright 1989 Pergamon Press plc.)

In three contributions Lueken, <u>et al</u>. presented the crystal structures of the isostructural dimers $[Cp_2LnBr]_2$ (Ln = Dy,⁹⁵ Er,⁹⁵ Yb⁹⁶ Figure 36; Dy-C(Cp) = 2.61(2)Å, Er-C(Cp) = 2.58(2)Å, Yb-C(Cp) = 2.55(4)Å); and the isostructural dimers $[Cp_2LnCl]_2$ (Ln = Er,⁹⁷ Yb;⁹⁶ Er-C(Cp) = 2.59(2)Å, Yb-C(Cp) = 2.58(1)Å). The Cl and Br derivatives differ in cell packing. Lueken also reported two other structural types for these compounds: $[Cp_2DyCl]_n^{96}$ (Figure 37; Dy-C(Cp) = 2.63(1)Å) and the tetrametallic $[Cp_2GdCl]_4^{99}$ (Figure 38; Gd-C(Cp) = 2.67(4)Å). The magnetic properties of several of these compounds were also presented.

Suleimanov¹⁰⁰ reasserted his claim to the synthesis of Cp_2Sm from the reaction of $HgCp_2$ and excess activated samarium.

Fig. 36. [Cp₂LnBr]₂ (Ln = Dy, Er, Yb). (Reprinted with permission from <u>Inorganica Chimica Acta</u>.)

Fig. 37. [Cp₂DyCl]_n. (Reprinted with permission from <u>Inorganica Chimica Acta</u>.)

Fig. 38. [Cp₂GdCl]₄. (Reprinted with permission from Inorganica Chimica Acta.)

Evans and Atwood, <u>et al</u>.¹⁰¹ discussed the structure of the trimetallic $[Cp_2^*SmCl]_3$ (Figure 39, Sm-C $(Cp^*) = 2.73(4)$ Å). This compound was reported to crystallize in the presence of tetra-

Fig. 39. [Cp^{*}₂SmCl]₃. (Reprinted with permission from <u>Journal</u> of the American Chemical Society. Copyright 1987 American Chemical Society.)

Fig. 40. The cation in $\{Cp_{2}^{*}ClSm(\mu-Cl)SmCp_{2}^{*}[\mu,\eta^{4}-Me(OCH_{2}CH_{2})_{4}-OMe]SmCp_{2}^{*}] \{[Cp_{2}^{*}ClSm]_{2}\{\mu-Cl)\}$ (Reprinted with permission from <u>Journal of the American Chemical Society</u>.) (Copyright 1987 American Chemical Society.)

Fig. 41. The anion in $\{Cp_2^*Clsm(\mu-Cl)SmCp_2^*[\mu, \eta^4-Me(OCH_2CH_2)_4O-Me]SmCp_2^* \{[Cp_2^*ClSm]_2\{\mu-Cl)\}.$ (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Shen, et al.¹⁰² reported the reaction of $Ce(PhEt_3)_2Cl_6$ or $CeCl_6(pyridine)$ with $LiCp^*$ in THF to give $Li[Cp^*_2CeCl_2] \cdot 2THF$ or $Li[Cp^*_2CeCl_2] \cdot 2pyridine$, respectively. Teuben and den Haan¹⁰³ reported the synthesis of $Cp^*_2Y(\mu-Cl)_2Li(OEt_2)_2$ and $Cp^*_2Y(\mu-Cl)_2Na-(OEt_2)$ from the metal chloride and $LiCp^*$ or $NaCp^*$ in THF. Replacement of the solvent led to $Cp^*_2Y(\mu-Cl)_2Li(tmeda)$, $Cp^*_2Y(\mu-Cl)_2Na-(Cl)_2Li(dme)$, $Cp^*_2Y(\mu-Cl)_2Na(tmeda)$, and $Cp^*_2YCl(THF)$. The latter was reported to react with pyridine, acetone, and $Al_2Cl_2Et_4$ to yield $Cp^*_2YCl(NC_5H_5)$, $Cp^*_2YCl(OCMe_2)$, and $Cp^*_2Y(\mu-Cl)_2AlEt_2$. The dimer $[Cp^*_2YCl]_2$ was prepared by sublimation of the THF adduct.

Evans and Atwood, et al.¹⁰⁴ published the synthesis and crystal structure of the polymeric $[Cp_{2}^{*}Ce(\mu-Cl)_{2}K(THF)]_{n}$ (Figure 42, Ce-C(Cp^{*}) = 2.79(2)Å). Unit cell data for $Cp_{2}^{*}CeCl(THF)$ were also given. The data agree with that found by Streitwieser, et al.¹⁰⁵ for $Cp_{2}^{*}LuCl(THF)$ (Figure 43, Lu-C(Cp^{*}) = 2.63(1)Å) and Schumann, et al.¹⁰⁶ for $Cp_{2}^{*}HoCl(THF)$ (Ho-C(Cp^{*}) = 2.67(1)Å). The crystal structure of $[Cp_{2}NdCl(THF)]_{2}$ was also reported.¹⁰⁷ The Nd atoms are reported to be asymmetrically bridged by the chloro anions. The structure of the Yb analog was published by Yasuda, et al.¹⁰⁸

Fig. 42. $[Cp_{2}^{*}Ce(\mu-Cl)_{2}K(THF)]_{n}$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Fig. 43. Cp^{*}₂LuCl(THF). (Reprinted with permission from <u>Jour-</u> <u>nal of the Chemical Society, Chemical Communica-</u> <u>tions</u>.)

Wayda³⁶ prepared $(Cp^{t}Bu)_{2}Ln$ (Ln = Sm, Lu). The crystal structure of $[(Cp^{t}Bu_{2})_{2}Lu(\mu-Cl)]_{2}$ was published by Bel'skii, <u>et al</u>.¹⁰⁹ and is depicted in Figure 44. The same authors prepared and structurally characterized $[(Cp^{t}Bu_{2})_{2}Ln(\mu-Cl)_{2}Li(tmeda)]$ (Ln = Ce,¹¹⁰ Lu¹¹¹)

In a major publication, Marks, <u>et al</u>.¹¹² investigated bond disruption enthalpies in Cp_2^*Sm compounds. Ligands studied included hydrides, dialkyl amides, alkoxides, halides, thiolates, and phosphides.

Fig. 44. [(Cp^tBu₂)₂Lu(μ-Cl)]₂. (Reprinted with permission from <u>Metalloorganicheskoi Khimiya</u>.)

Evans, et al.³⁸ used $[NH_4]_2[Ce(NO_3)_6]$ with NaCp to prepare $Cp_2Ce(NO_3)_2Na(THF)_2$. Shi, et al.¹¹³ prepared and structurally characterized $Cp_2Yb(acac)$ (Figure 45, Yb-C(Cp) = 2.61(1)Å). Other β -diketonate complexes of Cp_2Ln (Ln = Nd, Sm, Gd, Dy, Er, Yb) were prepared and studied.³⁹⁻⁴³ The specific ligands used are the same as given in section (i) for $CpLnL_2 \beta$ -diketonate complexes. Shen, et al.¹¹⁴ reported the preparation of Cp_2Yb benzoates and Chen, et al.¹¹⁵ studied heats of hydrolysis for Cp_2LnOAc (Ln = Sm, Gd, Tb, Lu) and Cp_2YbL (L = $CH(CO_2Me)_2$, $MeCOCHCO_2Et$, $MeCOCHCOCF_3$).

Fig. 45. Cp.Yb(acac). (Reprinted with permission from <u>Jour-</u> <u>nal of Organometallic Chemistry</u>.)

Evans and Atwood, et al.¹¹⁶ published the preparation and crystal structures of $[Cp_2^*Sm(THF)]_2O_2C_{16}H_{10}$ (Figure 46, Sm-C(Cp^{*}) = 2.75(2)Å), $[Cp_2^*Sm(CNCMe_3)]_2O$ (Figure 47, Sm-C(Cp^{*}) = 2.80(1)Å), and $Cp_2^*SmI(C_6H_{10}N_4)$ (Figure 48, Sm-C(Cp^{*}) = 2.73(2)Å). The same authors also published the μ -hydroxo species, $[Cp_2Y(\mu-OH)]_2\cdot C_2Ph_2$ (Figure 49, Y-C(Cp) = 2.68(3)Å).¹¹⁷ Deacon and Wilkinson¹¹⁸ prepared several carboxylate compounds, $Cp_2Yb(O_2CR)$ (R = Me, CF₃, Ph, C_6F_5 , C_6Br_5 , o-MeO_2CC_6F_4, 2,4,6-Me_3C_6H_2, pyridin-2-yl, quinolin-2yl), by oxidation of $Cp_2Yb(dme)$ with T1^{*} and Hg⁺² carboxylates.

Fig. 46. [Cp^{*}₂Sm(THF)]₂O₂C₁₆H₁₀. (Reprinted with permission from <u>Polyhedron</u>. Copyright 1988 Pergamon Press plc.)

Fig. 47. [Cp^{*}₂Sm(CNCMe₃)]₂O. (Reprinted with permission from <u>Polyhedron</u>. Copyright 1988 Pergamon Press plc.)

Fig. 48. Cp^{*}₂SmI(C₆H₁₀N₄). (Reprinted with permission from <u>Polyhedron</u>. Copyright 1988 Pergamon Press plc.)

Fig. 49. [Cp₂Y(µ-OH)]₂·C₂Ph₂. (Reprinted with permission from <u>Inorganic Chemistry</u>. Copyright 1988 American Chemical Society.)

Kinetic studies were carried out by Finke and Watson, <u>et</u> <u>al</u>.¹¹⁹ on the reactions of $Cp_2^*LnOEt_2$ (Ln = Sm^{+2} , Eu^{+2}) with alkyl and aryl halides. Samarium was reported to display enhanced reactivity while Eu underwent nonredox reactions. Kagan, <u>et</u> <u>al</u>.¹²⁰ evaluated Cp_2Sm in organic synthesis and Trifonov, <u>et al</u>.¹²¹ studied Cp_2Yb in the activation of N₂ in sodium naphthalide References p. 211 systems.

Long, <u>et al</u>.¹²² studied the ¹⁵¹Eu Mössbauer spectra of Cp_2^*Eu , Cp_2^*Eu (THF), Cp_2^*Eu (THF)(OEt₂), and $[Cp^*Eu$ (THF)₂(μ -I)]₂. Mass spectral data for seven 1,1'-(3-oxa-pentamethylene)dicyclo-pentadienyl lanthanide chlorides and eleven Cp_2LnCl compounds were published by Fu, <u>et al</u>.¹²³

(iv) <u>Biscyclopentadienyl group 6,9,10,14-16 compounds</u>. Andersen, <u>et al</u>.¹²⁴ published the crystal structure of $Cp_2^*Yb-(SC_6H_5)(NH_3)$ (Figure 50, Yb-C(Cp^{*}) = 2.64(2)Å, Yb-NH_3 = 2.428(5)Å, Yb-S = 2.674(5)Å). Deacon, <u>et al</u>.⁷⁶ prepared $Cp_2Ln(pyridine)_2$ (Ln = Eu, Yb) and $Cp_2Yb(NCMe)$. Knee and Bruno, <u>et al</u>.¹²⁵ included the crystal structure of $Cp_2^*CeI(NCMe)_2$ (Figure 51, Ce-C(Cp^{*}) = 2.79(1)Å, Ce-N = 2.63(1)Å) in a paper discussing the luminescence spectra and lifetimes of $Cp_2^*Ce compounds$.

Fig. 50. $Cp_2^*Yb(SC_6H_5)(NH_3)$. (Reprinted with permission from Acta Crystallographica.)

Fig. 51. Cp^{*}₂CeI(NCMe)₂. (Reprinted with permission from <u>Inorganic Chemistry</u>. Copyright 1988 American Chemical Society.)

Evans and Drummond¹²⁶ presented the reactions of $Cp_2^*Sm(THF)_2$ with pyridazine and benzaldehyde azine yielding reductively coupled products, and with bipyridine to give a Sm^{*3} bypyridyl complex. The crystal structures of all three products were described including $[Cp_2^*Sm(THF)]_2[\mu, \eta^4-(CH=NNCH=$ $CHCH-)_2]$ (Figure 52, $Sm-C(Cp^*) = 2.752(8)$ Å, Sm-N = 2.351(6), 2.430(6)Å), $[Cp_2^*Sm]_2[\mu, \eta^4-(PhHC=NNCHPh-)_2]$ (Figure 53, $Sm-C(Cp^*) =$ 2.76(2)Å, Sm-N = 2.32(1), 2.43(1)Å), and $Cp_2^*Sm(\eta^2-N_2C_{10}H_8)$ (Figure 54, $Sm-C(Cp^*) = 2.724(3)$ Å, Sm-N = 2.427(2), 2.436(2)Å).

Fig. 52. $[Cp_{2}^{*}Sm(THF)]_{2}[\mu, \eta^{4}-(CH=NNCH=CHCH-)_{2}]$. (Reprinted with permission from <u>Journal of the American Chemi-</u> <u>cal Society</u>. Copyright 1989 American Chemical Society.)

Fig. 53. $[Cp_{2}^{*}Sm]_{2}[\mu, \eta^{4}-(PhHC=NNCHPh-)_{2}]$. (Reprinted with permission from <u>Journal of the American Chemical</u> <u>Society</u>. Copyright 1989 American Chemical Society.)

Fig. 54. $\text{Cp}^*_{2}\text{Sm}(\eta^2-N_2C_{10}H_8)$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1989 American Chemical Society.)

Lawless, et al.¹²⁷ published high resolution ¹⁷¹Yb NMR data for $Cp_2^*Yb(THF)_2$, $Cp_2^*Yb(OEt_2)$, and $Cp_2^*Yb(NC_5H_5)_2$. Evans, et al.¹²⁸ reported the crystal structure of the first dinitrogen complex of an f-element, $[Cp_2^*Sm]_2N_2$ (Figure 55, Sm-C(Cp^{*}) = 2.73(2)Å, Sm-N = 2.36(1)Å).

Fig. 55. [Cp^{*}₂Sm]₂N₂. (Reprinted with permission from <u>Journal</u> of the <u>American Chemical Society</u>. Copyright 1988 American Chemical Society.)

References p. 211

123

Evans, et al.¹²⁹ reported in depth on the synthesis, structure, and reactivity of reduction and CO derivatization of azobenzene mediated by divalent lanthanide compounds. The reactions of PhNNPh with $Cp_2^*Sm(THF)_2$ produced $Cp_2^*Sm(\eta^2 - N_2Ph_2)$ (THF) · 0.5(THF) (Figure 56, Sm-C(Cp^*) = 2.76(2)Å, Sm-N = 2.42(2)Å), $[Cp_2^*Sm]_2(N_2Ph_2)$ (Figure 57, Sm-C(Cp^*) = 2.74(3)Å, Sm-N = 2.40(1)Å), and $[Cp^*Sm(THF)]_2[\mu, \eta^2: \eta^2 - N_2Ph_2]_2 \cdot 2(THF)$ (Figure 58, Sm-C(Cp^*) = 2.76(1)Å, Sm-N = 2.323(8), 2.559(7)Å).

Fig. 56. $Cp_{2}^{*}Sm(\eta^{2}-N_{2}Ph_{2})$ (THF) 0.5(THF). (Reprinted with permission from <u>Journal of the American Chemical Soci-</u> <u>ety</u>. Copyright 1988 American Chemical Society.)

Fig. 57. [Cp^{*}₂Sm]₂(N₂Ph₂). (Reprinted with permission from Journal of the American Chemical Society. Copyright 1988 American Chemical Society.)

Fig. 58. $[Cp^*Sm(THF)]_2[\mu, \eta^2: \eta^2-N_2Ph_2]_2 \cdot 2(THF).$ (Reprinted with permission from <u>Journal of the American Chemical</u> <u>Society</u>. Copyright 1988 American Chemical Society.)

When $Cp_2Yb(THF)$ is utilized the compounds obtained included $[CpYb(THF)]_2[\mu, \eta^2: \eta^2-N_2Ph_2]_2 \cdot C_7H_8$ (Figure 59, Yb-C(Cp) = 2.63(2)Å, Yb-N = 2.197(9), 2.53(4)Å). Reaction of the first Sm complex above with CO gave $[Cp^*_2Sm]_2[\mu, \eta^4-(PhN)OCCO(NPh)] \cdot 2C_7H_8$ (Figure 60, Sm-C(Cp^{*}) = 2.71(1)Å, Sm-N = 2.49(1)Å, Sm-O = 2.30(1)Å). Evans and Drummond¹³⁰ reported the reaction of RCHCHR (R = 2-pyridyl) with $Cp^*_2Sm(THF)_2$ followed by treatment with 80 psi of CO to produce $[Cp^*_2Sm]_2[\mu, \eta^4-RCH=C(O)C(O)=CHR] \cdot 2C_7H_8$ (Figure 61, Sm- $C(Cp^*) = 2.71(1)Å$, Sm-N = 2.473(7)Å, Sm-O = 2.191(6)Å).

Fig. 59. $[CpYb(THF)]_2[\mu, \eta^2: \eta^2-N_2Ph_2]_2 \cdot C_7H_8$. (Reprinted with permission from <u>Journal of the American Chemical</u> <u>Society</u>.) Copyright 1988 American Chemical Society.)

Fig. 60. $[Cp_{2}^{*}Sm]_{2}[\mu, \eta^{4}-(PhN)OCCO(NPh)] \cdot 2C_{7}H_{8}$. (Reprinted with permission from <u>Journal of the American Chemical</u> <u>Society</u>. Copyright 1988 American Chemical Society.)

Isotope exchange in $Cp_2LuN(D)CH_2Ph$ was investigated by Beletskaya, <u>et al</u>.¹³¹ Heterobimetallic complexes of Cp_2Ln and metal carbonyls were the subject of three reports. Bruno, <u>et</u> <u>al</u>.¹³² prepared and studied $[Cp''_2Ce(\mu-OC)W(CO)(Cp)(\mu-CO)]_2$ (Figure 62).

Fig. 62. $[Cp''_2Ce(\mu-OC)W(CO)(Cp)(\mu-CO)]_2$. (Reprinted with permission from Journal of the Chemical Society, Chemical Communications.)

Beletskaya, <u>et al</u>.^{133,134} made $[Cp_2Yb(THF)_2][Co(CO)_4]$ and $[Cp_2Yb-(THF)(\mu-CO)Co(CO)_3]$ (which was structurally characterized). Magomedov, <u>et al</u>.¹³⁵ studied the photoinduced electron transfer in these complexes. Deacon, <u>et al</u>.¹³⁶ prepared $(CpPPh_2)_2Yb(THF)$ and utilized it in the synthesis of the heterometallic, $[Yb(THF)_2-(CpPPh_2)_2PtMe_2]$. PhMe. The crystal structure is depicted in Figure 63.

Fig. 63. [Yb(THF)₂(CpPPh₂)₂PtMe₂] · PhMe. (Reprinted with permission from <u>Angewandte Chemie International</u>.)

Schumann, <u>et al</u>. synthesized and structurally characterized $Cp_{2}^{*}Lu(\mu-S^{t}Bu)_{2}Li(THF)_{2}$ (Figure 64, Lu-C(Cp^{*}) = 2.66(2)Å, Lu-S = 2.716(7)Å),^{27,137} $Cp_{2}Lu(\mu-SePh)_{2}Li(THF)_{2}$ (Figure 65, Lu-C(Cp) = 2.60(2)Å, Lu-Se = 2.799(1)Å),^{27,137} $Cp_{2}Lu(\mu-PPh_{2})_{2}Li(tmeda)$ (Figure 66),²⁷ $Cp_{2}Lu(\mu-AsPh_{2})_{2}Li(tmeda)$ (Figure 67, Lu-C(Cp) = 2.59(1)Å, Lu-As = 2.88(1)Å),^{27,138} and [Li(dme)_{3}][Cp_{2}Ln(SiMe_{3})_{2}] (Ln = Sm (Figure 68), Sm-Si = 2.88Å), Dy, Ho, Er, Tm, Lu).^{27,139}

Fig. 64. $Cp_{2}^{t}Lu(\mu-S^{t}Bu)_{2}Li(THF)_{2}$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 65. $Cp_2Lu(\mu-SePh)_2Li(THF)_2$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 66. $Cp_2Lu(\mu-PPh_2)_2Li(tmeda)$. (Reprinted with permission from <u>Polyhedron</u>. Copyright 1988 Pergamon Press plc.)

Fig. 67. Cp₂Lu(µ-AsPh₂)₂Li(tmeda). (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Fig. 68. The anion in [Li(dme)₃][Cp₂Sm(SiMe₃)₂]. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Andersen, <u>et al</u>. published the chemistry of $[Cp_{2}^{*}Yb]_{2}E^{140}$ and $Cp_{2}^{*}Yb(ER)L^{141}$ (E = 0, S, Se, Te; L = lewis base) derivatives. The crystal structures of $[Cp_{2}^{*}Yb]_{2}Se$ (Figure 69, Yb-C(Cp^{*}) = 2.609(7)Å, Yb-Se = 2.621(1)Å), ¹⁴⁰ Cp_{2}^{*}Yb(TePh)(NH_{3}) (Figure 70, Yb-C(Cp^{*}) = 2.63(3)Å, Yb-Te = 3.039(1)Å, Yb-NH_{3} = 2.50(1)Å), ¹⁴¹ and $[Cp_{2}^{*}Yb]_{2}Te_{2}$ (Figure 71, Yb-C(Cp^{*}) = 2.63(2)Å, Yb-Te = 3.156(4)Å)¹⁴² were determined.

Fig. 69. [Cp^{*}₂Yb]₂Se. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

CL 7 CU C18 C12 CI C7 C8 CS. C6 C16 05 co CIO C4 C19 C13

Fig. 70. $Cp_{2}^{*}Yb(TePh)(NH_{3})$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Fig. 71. [Cp^{*}₂Yb]₂Te₂. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Samarium is directly coordinated to phosphorous and carbon in $[Cp_{2}^{*}Sm(PC^{t}Bu)]_{2}$.¹⁴³ The crystal structure (Figure 72) reveals Sm-P distances of 2.945(2) and 2.952(2)Å and Sm-C(σ) separations of 2.557(6) and 2.556(6)Å. The compound was prepared by reductive dimerization of the phosphaalkyne.

Fig. 72. [Cp^{*}₂Sm(PC^tBu)]₂. (Reprinted with permission from <u>Angewandte Chemie International</u>.)

(v) <u>Biscyclopentadienyl hydrides</u>. Marks¹⁴⁴ published the text of his address at the Second International Conference on the Basic and Applied Chemistry of f-Transition and Related Elements (Lisbon). The paper dealt with catalysis at actinide centers via cleavage of H-H bonds. In a later report,¹⁴⁵ he provided the first spectroscopic detection of an organolanthanide dihydrogen complex, Cp*,EuH,. Ethylene coordination was also detected.

Teuben, et al.¹⁴⁶ prepared $[Cp_2^*YH]_2$ and $Cp_2^*YH(THF)$ by hydrogenolysis of $Cp_2^*YCH(SiMe_3)_2$ and $Cp_2^*YMe(THF)$, respectively. The latter was reported to be a catalyst in H/D exchange reactions between sp^3 -CH and sp^2 -CD bonds. Qian, et al.¹⁴⁷ reported the preparation, crystal structure, and reactivity with 1-hexane, 1hexene, phenylacetylene, and diphenylethyne of $[Cp_2LuH(THF)]_2$ (Figure 73, Lu-C(Cp) = 2.63(2)Å, Lu-H = 2.04(6)Å).

Fig. 73. [Cp₂LuH(THF)]₂. (Reprinted with permission from Inorganica Chimica Acta.)

Evans and Bau, et al.¹⁴⁸ published the synthesis of alkoxy hydride anions, { $[Cp_2Y(\mu-H)]_x[Cp_2Y(\mu-OMe)_3]_{3-x}(\mu_3-H)]$ } (x = 0-2) and the crystal structure of the $[Li(THF)_3]^+$ salt of x = 0 (Figure 74, Y-C(Cp) = 2.73(2)Å). The triply bridging central H atom was not located. The compounds were prepared by reaction of $[Li(THF)_4]{[Cp_2Y(\mu-H)]_3(\mu_3-H)}$ with CH₃OH at 0°C. Evans, et al.¹⁴⁹ also reported the hydrogenolysis of $[(CpMe_2)_2YMe]_2$ to yield $[(CpMe_2)_2YH]_3$ or if crystallized from THF, $[(CpMe_2)_2YH(THF)]_2$. Both were crystallographically characterized (Figure 75, Y- $C(CpMe_2) = 2.63(1)Å$; Figure 76 (THF solvate), Y-C(CpMe_2) = 2.69(1)Å, Y-H = 2.15Å).

Fig. 74. The $\{[(THF)_3Li]_2[Cp_2Y(\mu-OCH_3)]_3(\mu_3-H)\}^+$ cation in $\{[Li(THF)_3]\}_2\{[Cp_2Y(\mu-OCH_3)]_3(\mu_3-H)\}_2$. (Reprinted with permission from <u>Journal of the American Chemical</u> <u>Society</u>.)

Fig. 75. [(CpMe₂)₂YH]₃. (Reprinted with permission from <u>Organometallics</u>. Copyright 1987 American Chemical Society.)

References p. 211

135

Fig. 76. [(CpMe₂)₂YH(THF)]₂. (Reprinted with permission from Organometallics. Copyright 1987 American Chemical Society.)

Bulychev, <u>et al</u>. studied the reactions of $[Cp_2YCl]_2^{150}$ and $[Cp_2LuCl]_2^{151}$ with LiAlH₄ in benzene and in the presence of Lewis bases. The structurally characterized complexes reported include $[Cp_2Y]_2AlH_4(NEt_3) \cdot C_6H_6$ (Figure 77),¹⁵⁰ $[Cp_2Lu(\mu_2-H)AlH_3(NEt_3)]_2$ (Figure 78),¹⁵¹ $Cp_2Lu(\mu_2-H)_2AlH_3(NEt_3)$ (Figure 79),¹⁵¹ and $[(Cp^tBu_2)_2LuH]_2$ (Figure 80)¹⁵² IR data was reported for $Cp_2Y(THF)(\mu_2-H)_2AlCl(\mu_2-H)_3(THF)YCp_2.$ ¹⁵⁰

Fig. 77. [Cp₂Y]₂AlH₄(NEt₃)·C₆H₆. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 78. $[Cp_2Lu(\mu_2-H)AlH_3(NEt_3)]_2$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 79. $Cp_2Lu(\mu_2-H)_2AlH_3(NEt_3)$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 80. [(Cp^tBu₂)₂LuH]₂. (Reprinted with permission from <u>Organometallic Chemistry in the USSR</u>.)

Hydrogenolysis of Cp₂LuPh(THF) was reported¹⁵³ to give [Cp₂Lu-(μ -H)(THF)]₂. This compound was further utilized to prepare Cp₂LuOCH₂Ph(THF) by reaction with PhCHO and Cp₂Lu[Re(CO)₅](THF) by reaction with PhCHORe(CO)₅. The reactivity of [Cp₂LuCl]₂ with aluminum hydrides was investigated by Knyazhanskii, <u>et al</u>.¹⁵⁴ The complexes [Cp₂LuAlH₄(L)]₂ (L = NEt₃, OEt₂, THF), [Cp₂LuAlH₄]₂, [Cp₂LuAlH₃R]₂ (R = hexyl), and [CpLuAlH₂R₂]₂ (R = hexyl, Et) were prepared.

(vi) <u>Biscyclopentadienyl alkyl, aryl, and allyl compounds</u>. Evans, <u>et al</u>.¹⁴⁹ published the reactions of $(CpMe_2)_2VCl(THF)$ with LiMe to form $[(CpMe_2)_2YMe]_2$. The crystal structure revealed Y- $C(CpMe_2) = 2.65(2)$ Å, Y-C(Me) = 2.61(2)Å.

Several contributions detailed the synthesis, structures, and reactivities of compounds with linear bridges between Cp_2Ln and Be, Al, or Ga. Andersen and Burns¹⁵⁵ published the structure of $Cp_2^*YbMeBeCp^*$ (Figure 81, Yb-C(Cp^*) = 2.68(1)Å, Yb-Me = 2.766(4)Å, Yb-Me-Be = 177.2(3)°) prepared by addition of Cp_2^*Yb to Cp^*BeMe . Linearly bridging methyl groups were also observed in $[Cp_2^*Ln(\mu-Me)_2MMe_2]_2$ (Ln = Y, Lu; M = Al, Ga;¹⁵⁶ Ln = Sm, M = Al¹⁵⁷). The crystal structures of the isostructural $[Cp_2^*Ln(\mu-Me)_2AIMe_2]_2$ (Ln = Y, Me = 2.66(2)Å, Y-Me-Al = 176(1)°; Ln = Sm,¹⁵⁷ Sm-Me = 2.75(2)Å, Sm-Me-Al = 176(1)°), appeared.

Fig. 81. Cp^{*},YbMeBeCp^{*}. (Reprinted with permission from <u>Jour-</u> <u>nal of the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Fig. 82. $[Cp_{2}^{*}Y(\mu-Me)_{2}AlMe_{2}]_{2}$. (Reprinted with permission from Inorganica Chimica Acta.)

Two crystal structures were reported with terminal Ln-Me interactions. Evans, <u>et al</u>.¹⁵⁷ published Cp^{*}₂SmMe(THF) (Figure 83, References p. 211

 $Sm-C(Cp^*) = 2.711(6)Å$, Sm-Me = 2.48(1)Å). The isostructural Y analog was published by Teuben, <u>et al</u>.¹⁵⁸ (Y-C(Cp^*) = 2.66(2)Å, Y-Me = 2.44(2)Å). The Sm compound was reported to react with benzene and toluene to form $Cp_2^*Sm(C_6H_5)$ (THF) and $Cp_2^*Sm(CH_2C_6H_5)$ -(THF), respectively.¹⁵⁷

Fig. 83. Cp^{*}₂SmMe(THF). (Reprinted with permission from <u>Jour-</u> <u>nal of the American Chemical Society</u>. Copyright 1988 American Chemical Society.)

Arnaudet and Ban^{159} obtained $[Li(THF)_n][Cp_2EuMe]$ by the reaction of $Cp_2Eu(THF)_n$ with LiMe. A variable temperature ¹H NMR study was reported.

Teuben, et al.¹⁶⁰ investigated the reactivity of Cp_2^*Y chlorides in OEt₂ and THF with LiMe and LiAlMe₄. The new compounds prepared include $Cp_2^*Y(\mu-Me)(\mu-Cl)Li(OEt_2)_2$, $Cp_2^*Y(\mu-Me)_2LiOEt_2$, Cp_2^*YMe (THF), Cp_2^*YMe , $[Cp_2^*Y(\mu-Me)_2AlMe_2]_2$, and the MgCl₂(THF)₂ salts of Cp_2^*YMe , $Cp_2^*YCH_2Ph$, and $Cp_2^*Y(\eta^{1}-CH_2CMeCH_2)$.

Ethyl bridged Cp^{*}₂Ln complexes were reported. Evans, <u>et</u> <u>al</u>.¹⁶¹ synthesized Cp^{*}₂Sm(μ -Et)₂AlEt₂ by reaction of Cp^{*}₂Sm and AlEt₃ in toluene. The crystal structure revealed the bridging ethyl groups (Figure 84, Sm-C(Cp^{*}) = 2.712(2)Å, Sm-C(σ) = 2.662(4)Å). Yamamoto, <u>et al</u>.¹⁶² prepared Cp^{*}₂Yb(AlR₃)(THF) (R = Et, Me, ⁱBu) by similar reactions starting with Cp^{*}₂Yb(THF). The R = Et derivative was crystallographically characterized and is presented in Figure 85 (Yb-C(Cp^{*}) = 2.68(2)Å, Yb-C(1) = 2.85(2)Å, Yb-C(2) = 2.94(2)Å).

Teuben, et al.¹⁶³ published an extensive study of $Cp_2^*Ce^*$ complexes highlighted by the crystal structure of $Cp_2^*CeCH(SiMe_3)_2$ (Figure 86). An agostic interaction was justified on the basis of the unsymmetrical bonding of the alkyl ligand (Ce-C(σ) = 2.536(5)Å). Other compounds prepared and characterized in this paper included $Cp_2^*CeCl_2Li(THF)_{2.5}$, $Cp_2^*CeCl_2Li(dme)$, $(Cp_2^*CeCl)_n$, $Cp_2^*CeN(SiMe_3)_2$, $Cp_2^*CeCl_2Li(tmeda)_2$, $Cp_2^*CeNH^tBu\cdotNH_2^tBu$, $[Cp_2^*CeH]_2$, and $Cp^*CeCH(SiMe_3)_2^{-t}BuCN$.

Fig. 84. $Cp_{2}^{*}Sm(\mu-Et)_{2}AlEt_{2}$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Fig. 85. Cp^{*}₂Yb(μ-Et)AlEt₂(THF). (Reprinted with permission from <u>Chemistry Letters</u>.)

Fig. 86. $Cp_2^*CeCH(SiMe_3)_2$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Finke, Keenan, and Watson¹⁶⁴ published stoichiometric, kinetic, and mechanistic studies of $Cp_2^*YbOEt_2$ oxidative addition reactions and reactions of alkyl and aryl halides with Cp_2^*YbR .

The first η^2 -olefin complex of a lanthanide was prepared and characterized by Andersen and Burns.¹⁶⁵ Addition of $(\eta^2-C_2H_4)$ Pt-(PPh₃)₂ to Cp^{*}₂Yb in toluene produced Cp^{*}₂Yb(μ -C₂H₄)Pt(PPh₃)₂. The crystal structure was determined (Figure 87, Yb-C(Cp^{*}) = 2.67(2)Å, Yb-C(η^2) = 2.781(6)Å).

Fig. 87. $Cp_{2}^{*}Yb(\mu-C_{2}H_{4})Pt(PPh_{3})_{2}$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Evans, et al.¹⁶⁶ synthesized μ , η^2 -N-alkylformimidoyl complexes of Er and Y by reaction of $[(CpR)_2Ln(\mu-H)(THF)]_2$ with ^tBuCN. The compounds $[(CpR)_2Ln(\mu, \eta^2-HC=NCMe_3)]_2$ (Ln = Er, Y; R = H, Me) were prepared. The two R = H complexes were structurally characterized (Ln = Y, Y-C(Cp) = 2.68(1)Å, Y-C(σ) = 2.553(8)Å, Y-N = 2.325(4)Å; Ln = Er, Figure 88, Er-C(Cp) = 2.64(1)Å, Er-C(σ) = 2.52(2)Å; Er-N = 2.304(8)Å). The two compounds are reported not to be isostructural. Teuben, et al.¹⁴⁶ prepared Cp^{*}₂Y(η^2 -NC₅H₄), Cp^{*}₂Y(η^2 -NC₅H₄)(THF), and Cp^{*}₂Y(η^2 -NC₅H₅, 6-Me).

Fig. 88. $[Cp_2Er(\mu, \eta^2-HC=NCMe_3)]_2$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1987 American Chemical Society.)

Teuben, <u>et al</u>.¹⁶⁷ investigated the reactions of $Cp_2^*YCH(SiMe_3)_2$ with CO_2 , ^tBuCN, and ^tBuNC which gave $Cp_2^*Y(\eta^2-O_2CCH(SiMe_3)_2)$, $Cp_2^*YNC(^tBu)CH(SiMe_3)_2\cdotNC^tBu$, and $Cp_2^*YCH(SiMe_3)_2\cdotCN^tBu$. No reaction was observed with CS_2 and (2,6-xylyl)NC. Reactions of Cp_2^*YDMB $(DMB = 3,5-dimethylbenzyl)^{146}$ with the same ligands yielded $Cp_2^*Y(\eta^2-O_2C(DMB))$, $Cp_2^*Y(\eta^2-S_2C(DMB))$, $Cp_2^*YNC(DMB)^tBu\cdotNC^tBu$, $Cp_2^*Y-(\eta^2-C(DMB)N^tBu)\cdotCN^tBu$, and $Cp_2^*Y(\eta^2-C(DMB)N(2,6-xylyl))$. The last compound reacted with THF to give $Cp_2^*Y(\eta^2-C(DMB)N(2,6-xylyl)) -$ (THF) and the crystal structure of this complex was determined $(Figure 89, Y-C(Cp^*) = 2.728(4)Å$, $Y-C(\eta^2) = 2.392(3)Å$, $Y-N(\eta^2) =$ 2.407(3)Å.

Fig. 89. $\operatorname{Cp}^{*}_{2} Y(\eta^{2}-C(DMB)N(2,6-xylyl))(THF)$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1987 American Chemical Society.)

Andersen and Burns¹⁶⁸ prepared and structurally characterized the first η^2 -acetylene complex of a lanthanide. Addition of 2butyne to Cp_2^*Yb in pentane produced $Cp_2^*Yb(\eta^2-MeCCMe)$ (Figure 90, Yb-C(Cp^{*}) = 2.659(9)Å, Yb-C(η^2) = 2.85(1)Å). Evans and Atwood, et al.¹⁶⁹ also published an η^2 complex, $[Cp_2^*Sm]_2C_4Ph_2$, prepared by the reaction of $Cp_2^*Sm(THF)_2$ with PhC=CC=CPh. The crystal structure is shown in Figure 91 (Sm-C(Cp) = 2.71(2)Å, Sm-C(η^2) = 2.48(1)Å (C(1)), 2.76(1)Å (C(2)).

Fig. 90. $\operatorname{Cp}_{2}^{*}\operatorname{Yb}(\eta^{2}\operatorname{-MeCCMe})$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Fig. 91. [Cp^{*}₂Sm]₂C₄Ph₂. (Reprinted with permission from <u>Jour-</u> nal of the Chemical Society, Chemical Communications.)

Terminal alkynes $Cp_2^*YC\equiv CR \cdot 2$ (OEt) and $Cp_2^*YC\equiv CR \cdot 2$ (THF) (R = Me, Ph, SiMe₃) were isolated by Teuben, <u>et al</u>.¹⁴⁶ The isocyanide [$Cp_2^*Sm(CNC_6H_{11})(\mu-CN)$]₃ was prepared and structurally characterized by Evans and Drummond^{170,171} (Figure 92, Sm-C(Cp^{*}) = 2.75(2)Å, Sm-CNR = 2.58(2)Å).

Fig. 92. [Cp^{*}₂Sm(CNC₆H₁₁) (μ-CN)]₃. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Evans, et al.¹⁷² prepared and structurally characterized the bridged alkynide $Cp_2^*Y(\mu-C=CCMe_3)_2Li(THF)$ (Figure 93). This compound was prepared either by reaction of $Cp_2^*YCl(THF)$ and $LiC=CCMe_3$ or by first preparing $Y(^tBu)_4Li(THF)_4$ and further reacting it with KCp^{*}. The ^tBu groups block all but one THF from coordinating Li^{*}.

Fig. 93. $Cp_2^*Y(\mu-C=CCMe_3)_2Li(THF)$. (Reprinted with permission from Journal of Organometallic Chemistry.)

Deacon and Wilkinson¹⁷³ prepared Cp₂YbR (R = C₆F₅, C₆Cl₅, PhC=C) by reaction of Cp₂Yb(dme) with HgR₂. Allyl compounds, Cp₂NdC₃H₅, Cp₂Nd(C₃H₅)₂(THF), and Li[CpNd(C₃H₅)₃] dioxane were reported by Li, et al.¹⁷⁴ Benzyl samarium compounds Cp₂SmCH₂Ar (Ar = Ph, o^{-t}BuPh, 2,5-Me₂Ph) were prepared by Kagan, et al.¹⁷⁵ and their reactivity discussed.

The mixed ligand complexes $Cp_2LnInd(THF)$ (Ln = Sm, Dy, Ho, Er, Yb) were prepared by Zhennan, <u>et al</u>.¹⁷⁶ The complexes were characterized by analytical and spectral data.

(vii) <u>Bridged biscyclopentadienyl compounds</u>. Seven new solvated compounds of 1,1'-pentamethylenecyclopentadienyl $(Cp_2(CH_2)_5)$ were reported by Qian, <u>et al</u>.¹⁷⁷ These include $(Cp_2(CH_2)_5)LnCl(THF)$ (Ln = Sm, Gd, Dy, Er, Lu, Y) and $(Cp_2(CH_2)_5)-CpY(THF)$. These authors also prepared the corresponding 1,1'-(3-oxa-pentamethylene)biscyclopentadienyl complexes, $(Cp_2(CH_2CH_2)_20)-LnCl$ (Ln = Nd, Gd, Ho, Er, Yb, Lu, Y).¹⁷⁸ ¹H and ¹³C NMR spectra of some of their ring bridged Y and Lu chlorides were discussed in a third contribution.¹⁷⁹

Swamy and Schumann¹⁸⁰ prepared $(Cp_2(CH_2)_3)Ln(THF)_2$ (Ln = Sm, Yb) by reaction of the sodium salt of the bridged cyclopentadienyl ligand with LnCl₂ in THF. The crystal structure of the Yb complex was determined (Figure 94). The centroid-Yb-centroid angle is contracted at $127(1)^{\circ}$, however, the Yb-C distances of 2.67(2) to 2.73(2)Å are within the range observed for Cp₂Yb derivatives.

Fig. 94. $(Cp_2(CH_2)_3)$ Yb(THF)₂. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

(viii) <u>Cyclooctatetraene compounds</u>. Wayda, <u>et al</u>.¹⁸¹ reported a facile route to $SmI_2(THF)_2$ and its use in the synthesis of Sm(COT) and $K_2Sm(COT)_2$. Qi, <u>et al</u>.¹⁸² published the reactions of $SmCl_2$ and NdCl₂ with COT in THF leading to $Ln(COT)Cl(THF)_2$ (Ln = Sm, Nd). A similar reaction with Yb was unsuccessful. Luminescence studies of COT compounds⁵⁵ and the preparation of CpLnCOT compounds were discussed in earlier sections.

Streitwieser, et al.¹⁸³ studied the electron exchange between $K_2[Yb(COT^tBu)_2]$ and $K[Yb(COT^tBu)_2]$ in THF and THF/diglyme. A mechanism involving change in coordination of solvating diglyme was proposed. Wayda and Rogers, et al.¹⁸⁴ reported the synthesis and crystal structure of Yb(COT)(NC₅H₅)₃·0.5(NC₅H₅) (Figure 95 Yb-C = 2.64(3)Å, Yb-N = 2.58(2)Å). The COT^tBu derivative was also prepared.

Fig. 95. Yb(COT)(NC₅H₅)₃·0.5(NC₅H₅). (Reprinted with permission from <u>Organometallics</u>. Copyright 1987 American Chemical Society.) Cloke, et al.¹⁸⁵ prepared $[Y(COT(SiMe_3)_2)(THF)(\mu-Cl)]_2$. Reaction of $[YCl_3(THF)_3]$ with the 1,4-bis(trimethylsilyl)cycloocta-tetraene dianion (via deprotonation) afforded the compound. Takaya and Mashima¹⁸⁶ used iodine to prepare LnI(COT)(THF)_n (Ln = La, Ce, Pr, Nd, Sm; n = 1, 2, 3). The crystal structure of CeI(COT)(THF)₃ was determined (Figure 96, Ce-I = 3.299(1)Å, Ce-centroid = 2.010Å). Schumann, et al.¹⁸⁷ prepared Li[Lu(COTⁿBu)-(tmeda)₂].

Fig. 96. CeI(COT)(THF)₃. (Reprinted with permission from <u>Tetrahedron Letters</u>. Copyright 1989 Pergamon Press plc.)

(ix) <u>Carbollide compounds</u>. Hawthorne, <u>et al</u>.^{188,189} prepared and structurally characterized the first <u>closo</u>-lanthanacarboranes. Reaction of Na₂[<u>nido</u>-7,8-C₂B₉H₁₁] with LnI₂ (Ln = Sm, Yb) in THF produced Ln(C₂B₉H₁₁) (THF)₄. The Yb complex undergoes solvent replacement and the CH₃CN and dmf solvates were isolated. The crystal structure of the Yb-dmf adduct was determined (Figure 97). Further reaction of $Sm(C_2B_9H_{11})$ (THF)₄ with [PPN][<u>closo</u>-3,1,2-TlC₂B₉H₁₁] produced [PPN][3,3-(THF)₂-<u>commo</u>-3,3'-Sm(3,1,2-SmC₂B₉H₁₁)₂] (Figure 98).

Fig. 97. Yb(C₂B₉H₁₁)(dmf). (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1988 American Chemical Society.)

Fig. 98. The anion in [PPN][3,3-(THF)₂-<u>commo</u>-3,3'-Sm(3,1,2-SmC₂B₉H₁₁)₂]. (Reprinted with permission from <u>Journal</u> <u>of the American Chemical Society</u>. Copyright 1988 American Chemical Society.)

Khikmatov, et al.¹⁹⁰ reported the synthesis of $Er(C_2B_9H_{11})_3$ -(THF)₇, and $[La(BH_4)_2]_2C_2B_9H_{11}$ (THF) (n = 4, 6, 7, 10) by reactions of Na₂[C₂B₉H₁₁] with ErCl₃, La(BH₄)Cl, or La(BH₄)₃ in THF. Lebedev, et al.¹⁹¹ published the synthesis of Na[Gd(C₂B₉H₁₁)₂] by a similar reaction with GdCl₃ in THF.

Afonin, et al.¹⁹² published a study of the complexation of chlorinated cobalt dicarbollide with Sr^{+3} and Ce^{+3} .

(x) <u>Indenyl compounds</u>. R_3Ln (Ln = Y, Ce, Pr, Nd, La, Gd, Dy, Sm; R = indenyl, fluorenyl) were reported by Sharma and Sharma¹⁹³ by treatment of LnCl₃ with KR. Wu, <u>et al.</u>¹⁹⁴ prepared [Na(THF)₆]{[Ind₃Nd]₂Cl} by reaction of LnCl₃(THF)_n with NaInd in THF. The crystal structure was determined (Figure 99).

Fig. 99. The anion in [Na(THF)₆]{[Ind₃Nd]₂Cl}. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Zhou, et al.¹⁹⁵ prepared seven complexes of the type Ind_nLnL_{3-n} (n = 1, 2; Ln = Nd, Sm; L = chelating 8-hydroxyquinoline, oaminophenol) by reaction of the trisindenyl lanthanide with the chelating acid.

(xi) <u>Phospholyl compound</u>. Nief and Mathey^{1%} reported the syntheses of the first pi-heterocyclopentadienyl rare earth compounds. Reaction of Li[2,3,4,5-tetramethylphospholide] with

LnCl₃ produced $(\eta^{5}-C_{4}Me_{4}P)_{2}Ln(\mu-Cl)_{2}Li(solv)_{2}$ (Ln = Y, Lu; solv = OEt₂ or dme).

(xii) <u>Electronic structure and theory</u>. Green, Hohl and Rösch¹⁹⁷ studied the photoelectron spectra and molecular orbital calculations of $Cp_{2}^{*}Ln$ (Ln = Sm, Eu, Yb). Predominantly ionic character was found. Li, <u>et al.</u>¹⁹⁸ investigated the electronic structure of $Cp_{2}NdCl$ (THF) using INDO. The authors report the compound to be covalent with some ionic character. Li, <u>et al.</u>¹⁹⁹ studied cyclopentadienyl compounds of the lanthanides in terms of the cone packing model. Calculations and predictions of structural patterns were presented.

Bauschlicher, <u>et al</u>.²⁰⁰ reported on theoretical studies of first and second row transition metal methyl derivatives and their positive ions. Yttrium was included in this study.

Arene, aryl, alkyl, alkene, and allyl compounds not containing cyclopentadienyl ligands

(i) <u>Arene and aryl compounds</u>. Cotton and Schwotzer²⁰¹ prepared and structurally characterized the η^6 -arene, $(\eta^6-C_6Me_6)$ Sm-(AlCl₄)₃ (Figure 100, Sm-C(η^6) = 2.89(5)Å). The samarium derivative was prepared and structurally characterized by Fan, <u>et al</u>.²⁰² Cloke, <u>et al</u>.^{203,204} prepared the Y⁰ and Gd⁰ complexes ($\eta^6-C_6H_3$ ^tBu₃)₂Lm via metal vapor reaction with 1,3,5-tri-t-butylbenzene. The crystal structure of Ln = Gd (Figure 101) revealed eclipsed benzenes with staggered t-butyl groups and Gd-C(η^6) = 2.630(4)Å. In another contribution²⁰⁵ this work was extended to Ln = Nd, Tb, Dy, Ho, Er, and Lu. Thermally unstable complexes were prepared for Ln = La, Pr, Sm. For Ln = Ce, Eu, Tm, and Yb no isolatable products could be prepared.

Fig. 100. $(\eta^{\delta}-C_{\delta}Me_{\delta})$ Sm(AlCl₄)₃. (Reprinted with permission from <u>Organometallics</u>. Copyright 1987 American Chemical Society.)

Fig. 101. $(\eta^{6}-C_{s}H_{3}^{t}Bu_{3})_{2}Gd.$ (Reprinted with permission from <u>Journal of the Chemical Society, Chemical Communica-</u> <u>tions</u>.)

Reaction of LnCl₃ with activated AlCl₃ in benzene produced $(\eta^6 - C_6H_6) \text{Ln}(\text{AlCl}_4)_3 \cdot C_6H_6$ (Ln = La, Nd, Sm; Shen, <u>et al</u>.²⁰⁶). The References p. 211

crystal structures of Ln = Nd and Sm were determined (Figure 102) and found to be isostructural. These same authors²⁰⁷ determined the structure of the m-xylene derivative $(\eta^6-C_6H_4Me_2)Sm(AlCl_4)_3$ (Figure 103).

Fig. 102. $(\eta^{6}-C_{6}H_{6}) \operatorname{Ln}(\operatorname{AlCl}_{4})_{3} \cdot C_{6}H_{6} (\operatorname{Ln} = \operatorname{Nd}, \operatorname{Sm}).$ (Reprinted with permission from <u>Journal of Organometallic Chem-</u><u>istry</u>.)

Naphthalene complexes of Sm, Eu and Yb were investigated by Bochkarev, <u>et al</u>.²⁰⁸⁻²¹⁷ Arakawa, <u>et al</u>.²¹⁸ studied naphthalene and anthracene reactions with Ce, Eu, Pr, Nd, Dy, Ho, Er, and Sm. The UV spectra of Ln/naphthalene/OEt₂ (Ln = Ce, Eu) solutions were discussed.

The use of PhYbI in C-C bond formation and cleavage, and C-C double bond reduction was investigated by Fujiwara, et al.²¹⁹ Deacon, et al.²²⁰ utilized $Ln(C_6F_5)_2$ (Ln = Yb, Eu) to prepare $Ln(OR)_2(THF)_3$ (Ln = Yb, Eu, R = 2-6-^tBu₂-4-MeC₆H₂; Ln = Yb, R = 2,4,6-^tBu₃C₆H₂, 2,6-^tBu₂C₆H₃) and $Ln(NR_2)_2(THF)_4$ (Ln = Yb, Eu; NR₂ = carbazo-9-yl; Ln = Yb, NR₂ = 2-phenylindol-1-yl).

Fig. 103. $(\eta^{6}-C_{6}H_{4}Me_{2})Sm(AlCl_{4})_{3}$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Rybakova, <u>et al</u>.^{221,222} studied the reaction of PhYbI with aryl halides. Ph₂Yb was prepared by reaction of HgPh₂ with Yb⁰ by activation with CH₂I₂.²²³ Sigalov and Beletskaya²²⁴ studied the reactions of PhLnI (Ln = Ce, Sm, Eu, Yb) with fluoroolefins. Suleimanov, <u>et al</u>.^{225,226} studied the interaction of lanthanides in lanthanide-containing metallocene derivatives of Fe, Mg, Rh, and Mo. A Ln-C₅H₄ sigma interaction was proposed. Cai, <u>et al</u>.²²⁷ reported the preparation of Er and Yb phenyl compounds.

Hu, <u>et al</u>.²²⁸ carried out the structural determination of tris(2,4-dimethylpentadiene)gadolinium. The 1, 3, and 5 carbons bend toward Gd⁺³, while the 2,4 carbons bend away from the metal ion. The average Gd-C separations range from 2.738Å (C(1), C(5) positions) to 2.821Å (C(2), C(4) positions). The tris derivative of Nd was utilized by Taube, <u>et al</u>.²²⁹ to prepare $(2,4-C_7H_{11})$ -

 $MdCl_2 \cdot 1/3$ (THF) via reaction with $NdCl_3 \cdot 2$ (THF). The crystal structure of this compound (Figure 104) revealed a hexameric $Nd_6Cl_{12}(2,4-C_7H_{11})_6$ (THF)₂ structure.

Fig. 104. Nd₆Cl₁₂(2,4-C₇H₁₁)₆(THF)₂. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

(ii) <u>Alkyne, alkene, and alkyl compounds</u>. The tris-alkynes $Ln(C_2Ph)_3$ (Ln = Eu, Er, Yb) were isolated by Bochkarev, <u>et al</u>.²³⁰ The Yb derivative was used in sodium naphthalide solutions to activate N_2 .¹²¹ YbMeI was utilized in C-C bond formation and cleavage, and C-C bond reduction reactions.²¹⁹ The reactions of this same compound with alkyl halides were investigated.²²¹ Decomposition reactions of alkyllanthanides were studied by Yakovlev, et al.,²³¹⁻²³³ and gave stable hydrides.

Several contributions to the area of gas phase reactions of Ln^* with alkanes and alkenes appeared. Schilling and Beauchamp²³⁴ studied the reaction of Pr^* , Eu^* , and Gd^* with several alkanes, cycloalkanes, and alkenes. The Gd^* ion was observed to activate C-H and C-C bonds of alkanes while Pr^* and Eu^* did not. Both Gd^* and Pr^* were reported to react with alkenes to give dehydrogenation products and small amounts of C-C bond cleavage products. Reaction with oxygen-containing molecules (nitric oxide, formal-dehyde, etc.) gave metal oxides. Sunderlin and Armentrout²³⁵ studied the reactions of Y^{*}, La^{*} and Lu^{*} with methane and ethane using guided ion beam mass spectroscopy. Major products with methane at low energy were reported to be MCH_2^* and at high

energy MH^* . Haung and Freiser²³⁶ investigated reactions of LaFe^{*} with saturated hydrocarbons. The LaFe⁺ ion was obtained by reaction of laser-generated La⁺ with Fe(CO)₅. Observed results are different from those seen with either La⁺ or Fe⁺ alone. Hettich and Freiser²³⁷ determined carbide, carbyne, and carbene bond energies by gas phase photodissociation of LaCH₂⁺.

Andrews and Wayda²³⁸ prepared $Eu(C_2H_4)_n$ by codepositing Eu atoms with ethylene at 12K. UV-VIS, IR, and thermal data were obtained. MO calculations revealed weak bonding by Eu f-orbitals into the π^* system of ethylene. Saussine, <u>et al</u>.²³⁹ reacted metallic Sm and Yb with unsaturated hydrocarbons in ether to give organometallic adducts. The Sm derivatives were reported to catalyze hydrogenation of monoclefins and to polymerize ethylene.

Linear and cyclic dienes $LnCl_{3-x}R_xM\cdot nL$ (Ln = La, Pr, Nd, Sm, Gd, Dy; M = MgCl, LiCl; x, n = 0-3; L = THF, dmso) were prepared by Sun and Chen.²⁴⁰ Shan, <u>et al</u>.²⁴¹ published the crystal structure of $[Al_3Nd_6(\mu_2-Cl)_6(\mu_3-Cl)_6(\mu_2-Et)_9O^{i}Pr]_2$. Hu, <u>et al</u>.²⁴² reported Nd(OMe)₃ and LiⁿBu react in pentane at room temperature to yield Nd(ⁿBu)H₂·3LiOMe.

Thiele, et al.²⁴³ prepared a La benzyl bond by reaction of HgBz₂ in THF with La to give $La(CH_2C_6H_5)(H)(OCHCH_2)(THF)_2$. Li, et al.²⁴⁴ reported the preparation of the binuclear complexes $[(C_6H_5CO)_2CH]_2LnM(CO)_2CP$ (M = Fe, Mo), $[(C_6H_5CO)_2CH]_2LnSnPh_3$, and $[(C_6H_5CO)_2CH]_2LnPPh_3$.

Yb(CH₂SiMe₃)₃ was used with sodium naphthalide to activate N₂.¹²¹ Hitchcock, <u>et al</u>.²⁴⁵ structurally characterized similar homoleptic lanthanide alkyls, Ln[CH(SiMe₃)₂]₃ (Ln = La, Sm). The complexes were prepared by reaction of Ln(OC₆H₃^tBu₂-2,6)₃ with Li[CH(SiMe₃)₂]. The structure of Ln = La is shown in Figure 105 (La-C = 2.515(9)Å, Sm-C = 2.33(2)Å). Agostic interactions are probable. When LaCl₃ was used as the starting material, the complex La[CH(SiMe₃)₂]₃(μ -Cl)Li(pmdeta) (pmdeta = MeN(CH₂CH₂NMe₂)₂) was isolated (Atwood and Lappert, <u>et al</u>.²⁴⁶). The crystal structure (Figure 106) revealed a La-C distance of 2.60(3)Å. The Sm analog with a bridging methyl group, Sm[CH(SiMe₃)₂]₃(μ -Me)Li-(pmdeta), was also isolated and structurally characterized (Figure 107, Sm-CH(SiMe₃)₂ = 2.51(2)Å, Sm-Me = 2.33(3)Å).²⁴⁷

Fig. 105. La[CH(SiMe₃)₂]₃. (Reprinted with permission from <u>Journal of the Chemical Society, Chemical Communica-</u> <u>tions</u>.)

Fig. 106. La[CH(SiMe₃)₂]₃(μ-Cl)Li(pmdeta). (Reprinted with permission from <u>Journal of the Chemical Society</u>, Chemical Communications.)

Fig. 107. $Sm[CH(SiMe_3)_2]_3(\mu-Me)Li(pmdeta)$. (Reprinted with permission from <u>Journal of the Chemical Society</u>, <u>Chemical Communications</u>.)

The tetraphenylbutadiene lanthanide metallacycles $LLn(\mu-Cl)_2Li(THF)_n$ (Ln = Nd, Gd) were prepared by Bao and Chen.²⁴⁸

(iii) <u>Allyl compounds</u>. The crystal structure of $[Li_2(\mu - C_3H_5)(THF)_3][Ce(\eta^3-C_3H_5)_4]$ was reported by Huang, <u>et al</u>.²⁴⁹ (Figure 108). The Ce-C(η^3) bonds reported ranged from 2.712(8) to 2.858(7)Å. The same authors reported the synthesis of the allyls, $Li_2Ln(C_6H_5)_5$ 2.5dioxane (Ln = Dy, Ho, Er).²⁵⁰ Brunelli, <u>et al</u>.²⁵¹ investigated LiLn(C₃H₅)₄ dioxane complexes of Ce, Nd, Sm, Gd, and Dy.

Fig. 108. $[Li_2(\mu-C_3H_5)(THF)_3][Ce(\eta^3-C_3H_5)_4]$. (Reprinted with permission from <u>Inorganica Chimica Acta.</u>)

ACTINIDES

Cyclopentadienyl and cyclopentadienyl-like compounds

(i) <u>Tetrakiscyclopentadienyl compounds</u>. Kuleshov, <u>et al</u>.²⁵² discussed the chemiluminescence of the autooxidation of Cp_4U and the photoluminescence of the oxidation products. Leonov, <u>et al</u>.²⁵³ studied the mechanism of the reaction of Cp_4U with O_2 .

Sonnenberger and Gaudiello²⁵⁴ carried out a cyclic voltammetric study of Cp_4U and Cp_4Np to investigate the effect of ligand on the An(IV)/An(III) couple. The compounds exhibited a single reduction wave indicating a one electron reversible process. Adrian, et al.^{255,256} studied the ²³⁷Np Mössbauer spectra of Cp_4Np and began to develop a model which describes the splitting of the nuclear states by an asymmetric quadrapole splitting and an anisotropic paramagnetic hyperfine coupling. Conclusions on distribution of charge density and on molecular structure were drawn. Pyykkö, Laakkonen, and Tatsumi²⁵⁷ presented interactive relativistic extended Hückel energy parameters for An = Th-Np which gave realistic metal orbital populations for Cp_4Th and Cp_4U .

(ii) Triscyclopentadienyl compounds. Zalkin and Andersen²⁵⁸ published the crystal structure of $Cp'_{3}U$ (Figure 109, U-C(Cp') = 2.78(4)Å). Edelstein, et al. and Lappert, et al. published the synthesis and crystal structure of Cp", Th (Figure 110, Th-C(Cp") = 2.80(2)Å)²⁵⁹ and obtained its EPR spectrum.²⁶⁰ In this compound Th(III) has a 6d¹ ground state. Bursten, et al.²⁶¹ carried out quasi-relativistic $X\alpha$ -scattered wave calculations on Cp,An (An = Th, U, Pa, Np, Pu). The An = Th compound was predicted to have a $6d^1$ ground state, while An = U was reported to probably be $6d^15f^2$. In a second contribution Bursten, et al. 262 studied Cp.UL compounds for L = H, CO, NO, OH. Sigma bonding to the π -neutral, π acidic, and π -basic ligands was reported to be essentially the same-donation of electron density from the sigma orbital of L into a uranium orbital that is primarily 6d, in character. The authors reported that the 5f orbitals are responsible for back donation into the π^* orbitals of CO and NO. Acceptance of electron density from the π orbitals of OH reportedly involves the 6d orbitals. Andersen, et al.73 studied the relative affinity of Lewis bases toward (CpMe), U and found the trend $PMe_x > P(OMe)_x >$ $NC_5H_5 > SC_4H_8 - THF - N(CH_2CH_2)_3CH > CO.$

163

Fig. 109. Cp'₃U. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 110. Cp"₃Th. (Reprinted with permission from <u>Inorganica</u> <u>Chimica Acta</u>.)

(iii) <u>Triscyclopentadienyl halide compounds</u>. Deacon and Tuong²⁶³ reported the preparation of Cp_3UCl from reaction of

HgCp₂/HgCl₂ or TlCp/HgCl₂ with excess uranium in THF. The neutron diffraction crystal structure of this compound was determined by Spirlet, <u>et al</u>.²⁶⁴ Disorder of the Cp rings and a crystallographic phase transition between 80 and 100 K were observed. These authors also published the X-ray structure of Cp₃UBr²⁶⁵ (Figure 111, U-C(Cp) = 2.72(1)Å). The chloro and bromo derivatives are reported to be geometrically similar but not isostructural. Chang, <u>et al</u>.²⁶⁶ prepared the bridging complexes Cp₃U(μ -Cl)₂AlCl₂ and Cp₃U(μ -Cl)₂AlCl₂(THF) by reaction of Cp₃UCl with AlCl₃.

Fig. 111. Cp₃UBr. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Amberger, et al.²⁶⁷ determined the crystal field splitting pattern of $(\eta^5-C_5D_5)_3$ UCl from the absorption and magnetic circular dichroism spectra at room temperature. McGarvey and Nagy^{268,269} measured the ¹H NMR spectra of solid powders of Cp₃UCl from 90 to 298K. Anisotropy in the line shape became more evident as the temperature was lowered. Below 140K rotation of the Cp rings appeared to cease. A case was made for different solution versus solid state structures.

Leonov, <u>et al</u>.²⁵³ discussed the reaction of Cp₃UCl with O₂. Cyclic voltammetry on Cp₃UCl and Cp₃NpCl was carried out by Sonnenberger and Gaudiello.²⁵⁴ ²³⁷Np Mössbauer results were reported by Adrian, <u>et al</u>.²⁷⁰ for Cp₃Np(μ -Cl)₂AlCl₂ and by Spitsyn, <u>et al</u>.²⁷¹ for Cp₃NpCl. The U⁺³ compound [Na(18-crown-6)(THF)₂]-[(Cp₃U)₂Cl] was prepared by amalgam reductions of Cp₃UX (X = Cl, BH₄, Me, ⁿBu).²⁷² The crystal structure (Figure 112) revealed a symmetrical, bent chloro bridge.

Tel'noi, <u>et al</u>.²⁷³ determined the average heats of formation and U-Cl, U-C, and U-O bond cleavage for Cp_3UR compounds (R = Cl, CH_2CHMe_2 , OBu).

Fig. 112. The anion in [Na(18-crown-6)(THF)₂][(Cp₃U)₂Cl]. (Reprinted with permission from <u>Journal of Organome-</u> <u>tallic Chemistry</u>.)

(iv) <u>Triscyclopentadienyl hydrides</u>. Zanella, <u>et al</u>.²⁷⁴ prepared Cp₃U(9-borabicyclo(3.3.1)nonane) by the reaction of Cp₃UCl and the sodium salt of the ligand. The crystal structure was determined (Figure 113, U-C(Cp) = 2.76(1)Å, U^{...}B = 2.78(4)Å). The borohydride Cp₃UBH₄ was obtained by Porchia, <u>et al</u>.²⁷⁵ when reacting Cp₃UL (L = Me, Et, Ph, NEt₂, OMe, F, CONEt₂, COBu) with BH₃L' (L' = THF, BH₃, Me₂S). Cp₃UX (X = Cl, Br, I) compounds were not reactive. Zanella <u>et al</u>.²⁷⁶ studied the chemical and physical properties of Cp₃UBH₄, (CpMe)₃UBH₄, Cp₃UBH₃Me, Cp₃UBH₃Et, and Cp₃UBH₃Ph. A partial structure determination of Cp₃UBH₄ indicated a trihapto coordination of BH₄ to U (U^{...}B = 2.48Å).

Fig. 113. Cp₃U(9-borabicyclo(3.3.1)nonane). (Reprinted with permission from <u>Journal of Organometallic Chemis-</u> try.)

Ephritikhine, <u>et al</u>.²⁷⁷ prepared the anionic U(III) compound [Na(18-crown-6)][Cp₃UBH₄] by Na/Hg reduction of Cp₃UBH₄. When Cp₃UCl was reduced in a similar fashion and in the presence of NaH, [Na(THF)₂][(Cp₃U)₂(μ -H)]²⁷⁸ was prepared. The crystal structure is depicted in Figure 114 (U-C(Cp) = 2.82Å, U-H = 2, 2.4Å).

Fig. 114. $[Na(THF)_2][(Cp_3U)_2(\mu-H)].$ (Reprinted with permission from <u>Journal of the Chemical Society, Chemical Com-</u> munications.)

(v) Triscyclopentadienyl compounds with bonds to N. The crystal structure of $(CpMe)_3UNH_3$ was published by Rosen and Zalkin²⁷⁹ (Figure 115, U-C(CpMe) = 2.81(5)Å, U-NH₃ = 2.61(3)Å). Rebizant, <u>et al.</u>²⁸⁰ reported the crystal structure of $[Cp_3U-(NCMe)_2][CpThCl_4(NCMe)]$ (cation: Figure 116, U-C(Cp) = 2.73(3)Å, U-N = 2.54(4)Å). The crystal structure of $(CpMe)_3U(NC_5H_4NMe_2)$ was

carried out by Zalkin and Brennan²⁸¹ (Figure 117, U-C(CpMe) = 2.82(4)Å, U-N = 2.64(2)Å).

Fig. 115. (CpMe)₃UNH₃. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 116. The cation in [Cp₃U(NCMe)₂]{CpThCl₄(NCMe)]. (Reprinted with permission from <u>Inorganica Chimica</u> <u>Acta</u>.)

Fig. 117. (CpMe) $_{3}U(NC_{5}H_{4}NMe_{2})$. (Reprinted with permission from <u>Acta Crystallographica</u>.)

Cramer, et al.²⁸² prepared $Cp_3AnNPPh_3$ by the reaction of Cp_3AnCl (An = U, Th) with LiNPPh₃ and determined the crystal structure of An = U (Figure 118, U-C(Cp) = 2.78(2)Å, U-N = 2.07(2)Å). The authors suggest a U-N triple bond and carried out molecular orbital calculations on several Cp_3U-N and Cp_3U-O compounds which support their claim. The crystal structure of Cp_3UNPh_2 was reported by the same authors²⁸³ (Figure 119, U-C(Cp) = 2.79(3)Å, U-N = 2.29(1)Å). The compound was prepared by the reaction of $Cp_3UCHPMePh_2$ and $HNPh_2$. The authors suggest the presence of a U-N double bond.

Fig. 118. Cp₃UNPPh₃. (Reprinted with permission from <u>Organo-</u> <u>metallics</u>. Copyright 1988 American Chemical Society.)

Fig. 119. Cp₁UNPh₂. (Reprinted with permission from <u>Organo-</u> <u>metallics</u>. Copyright 1987 American Chemical Society.)

Fischer, et al.²⁸⁴ published the preparation of $[Cp_3U(NCR)_2]$ -[BPh₄] (R = Me, Et, ⁿPr, Ph) by reaction of $[Cp_3U(OH_2)_2]$ -[BPh₄] n(H₂O) and nitrile in n-hexane or by reaction of Cp₃UCl and Na[BPh₄] in NCR/H₂O mixtures. ¹H NMR, near-IR/VIS spectra and the crystal structures of $[Cp_3U(NCMe)_2]$ [BPh₄] (Figure 120, U-C(Cp) = 2.73Å, U-N = 2.57(1)Å) and Cp₃U(NCS)(NCMe) (Figure 121, U-C(Cp) = 2.74Å, U-N = 2.44(1)Å (S), 2.66(1)Å (Me)) were reported.

Andersen, et al.⁸² published the synthesis and structure of $(CpMe)_3U[N(CH_2CH_2)_3CH]$ (Figure 122, U-C(CpMe) = 2.82(3)Å, U-N = 2.764(4)Å).

Rossetto, <u>et al</u>.²⁸⁵ reacted Cp₃UL (L = Cl, Me, "Bu, Ph) in toluene with tetracyanoethylene and 7,7,8,8-tetracyanoquinodimethane to yield Cp₃U keteniminates. Spectral data indicated trigonal bipyramidal metal coordination. Amberger, <u>et al</u>.²⁸⁶ discussed the parameterization of the crystal field splitting patterns in $[Cp_3U(NCS)_2]^{-}$ and $[Cp_3U(NCBH_3)_2]^{-}$. ²³⁷Np Mössbauer data were reported for $[Cp_3Np(NCMe)_2][AlCl_4]$,²⁵⁵ Cp₃NpL (L = NCS, NCMe)²⁵⁶ and Cp₃Nd(NC₆H₆).²⁷⁰

Fig. 120. [Cp₃U(NCMe)₂][BPh₄]. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 121. Cp₃U(NCS)(NCMe). (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 122. (CpMe)₃U[N(CH₂CH₂)₃CH]. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

(vi) <u>Triscyclopentadienyl compounds with bonds to O, P, Si,</u> <u>Fe, Ge, Ru</u>. Edelmann, <u>et al</u>.²⁸⁷ prepared Cp₃UOR (R = CH₂CF₃, C(CF₃)₂CH₃, C(CF₃)₂CCl₃, C(CF₃)₂CF(CF₃)₂, C₆F₅) by reaction of Cp₃UCl with NaOR in THF. The crystal structure of R = C(CF₃)₂CCl₃ is presented in Figure 123 (U-C(Cp) = 2.74(1)Å, U-O = 2.23(1)Å).

Fig. 123. Cp₃UOC(CF₃)₂CCl₃. (Reprinted with permission from <u>Inorganica Chimica Acta</u>.)

Cramer, et al.²⁸⁸ reported the insertion of PhNCO into the U-C double bond in $Cp_3UCHP(Ph)(R)(Me)$ (R = Me, Ph) to yield Cp_3U- [(NPh)(O)CCHP(Ph)(R)(Me)]. The R = Me derivative was crystal-lographically characterized (Figure 124, U-C(Cp) = 2.84(2)Å, U-N = 2.45(1)Å, U-O = 2.34(1)Å).

Fig. 124. Cp₃U[(NPh)(O)CCHP(Ph)(Me)₂]. (Reprinted with permission from <u>Organometallics</u>. Copyright 1987 American Chemical Society.)

Andersen, <u>et al</u>. prepared and structurally characterized two compounds with P bonded to Cp_3U fragments. Reaction of Cp_3U (THF) with dmpe produced $(Cp_3U)_2$ dmpe (Figure 125, U-C(Cp) = 2.77(3)Å, U-P = 3.022(2)Å).²⁸⁹ The reaction of $(CpMe)_3U$ (THF) with $P(OCH_2)_3CEt$ in OEt_2 produced $(CpMe)_3U[P(OCH_2)_3CEt]^{82}$ (Figure 126, U-C(CpMe) = 2.80(5)Å, U-P = 2.998(6)Å). In the latter compound the authors rationalized the bond lengths in terms of U-P π -back bonding after comparison with the isostructural Ce compounds⁸² (L = $N(CH_2CH_2)_3CH$, Ce-C(CpMe) = 2.85(3)Å, Ce-N = 2.789(3)Å; L = $P(OCH_2)_3CEt$, Ce-C(CpMe) = 2.82(3)Å, Ce-P = 3.086(3)Å).

Porchia, <u>et al</u>.²⁹⁰ reported the synthesis of $Cp_3U(SiPh_3)$ from Cp_3UCl and $Li(SiPh_3)$, its 2,6-dimethylphenyl isocyanide insertion product, $Cp_3U[C(NC_6H_3Me_2-2,6)SiPh_3]$, and the crystal structure of $Cp_3U(OSiPh_3)$. The latter complex was prepared by reaction of $Cp_3U(NEt_2)$ and $SiPh_3OH$ and exhibits a nearly linear U-O-Si interaction (U-O = 2.135(8)Å, U-O-Si = 172.6(6)°).

Fig. 125. (Cp₃U)₂dmpe. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 126. (CpMe)₃U[P(OCH₂)₃CEt]. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Marks and Sternal²⁹¹ reacted Cp_3AnCl (An = Th, U) and $(CpMe)_3$ -ThCl with $NaCpM(CO)_2$ (M = Fe, Ru) to give the metal-metal bonded $Cp_3An-MCp(CO)_2$ and $(CpMe)_3Th-MCp(CO)_2$. The authors reported hindered rotation about the An-M bond and facile cleavage by alcohols and ketones. Porchia, <u>et al</u>.²⁹² prepared Cp_3UGePh_3 from Cp_3UCl and KGePh_3. Insertion of CN(xylyl) into the U-Ge bond was readily accomplished.

(vii) <u>Triscyclopentadienyl compounds with bonds to C</u>. Marks, <u>et al</u>.²⁹³ measured the absolute bond disruption enthalpies in Cp'₃UR (R = I, 62.4(4); ⁿBu, 29(2); Bz, 26(3); CH₂SiMe₃, 39(2); Me, 45(1); vinyl, 48(2); C=CPh, 86.7) by halogenolytic isoperibol titration calorimetry of Cp'₃U/Cp'₃UI/Cp'₃UR. The crystal structure of Cp'₃U(vinyl) was included (Figure 127, U-C(Cp') = 2.759(4)Å, U-C(α -vinyl) = 2.436(4)Å).

Fig. 127. Cp'₃U(vinyl). (Reprinted with permission from <u>Poly-hedron</u>. Copyright 1988 Pergamon Press plc.)

Andersen, <u>et al</u>.²⁹⁴ prepared Li(tmeda)₂{[Li(tmeda)]₂CpMe}-{[(CpMe)₃U]₂Me} by reaction of (CpMe)₃U(THF) with LiMe in OEt₂ and 1 equivalent of tmeda. The crystal structure (Figure 128) reveals U-C(Cp) = 2.82(4)Å, U-Me = 2.72(1)Å and U-Me-U = 177(1)°.

The complexes Cp_3UBPh_4 , $Cp_3UMeBPh_3$, and their CpMe derivatives were prepared (Fischer, <u>et al</u>.²⁹⁵) by dehydration of $[Cp_3U(OH_2)_2]$ - $[BPh_4] n(H_2O)$ or addition of BPh₃ to Cp_3UMe . Spectroscopic and chemical evidence suggested cation/anion interactions such as U-Me-B bridges.

Fig. 128. Li(tmeda)₂{[Li(tmeda)]₂CpMe){[(CpMe)₃U]₂Me). (Reprinted with permission from <u>Journal of the American</u> <u>Chemical Society</u>. Copyright 1989 American Chemical Society.)

Alkyl complexes, Cp₃UR (R = Me, ⁿBu, ⁿPent), were purified by (Ephritikhine, <u>et al</u>.^{296,297}) by reaction of Cp₃U(THF) with LiR. Further reaction with LiR' or hydrogenolysis in the presence of a terminal olefin resulted in alkyl exchange. The alkyne complex Cp₃U(C₂Ph₂) was obtained by reaction of Cp₃U(THF) with C₂Ph₂. Anionic complexes [Na(18-crown-6)][Cp₃UR] (R = Me, ⁿBu) were obtained by Na/Hg reduction of Cp₃UR.²⁷⁷

Zanella, <u>et al</u>.²⁹⁸ studied the insertion reactions of 2,6dimethylphenyl isocyanide into the U-N bonds in Cp₃UNEt₂ and the U-P bonds in Cp₃UPPh₂. The crystal structure of Cp₃U[C(NEt₂)=-NC₆H₃Me₂-2,6] was also reported (Figure 129, U-C(Cp) = 2.808Å, U-C(η^2) = 2.35(2)Å, U-N(η^2) = 2.35(2)Å).

Fig. 129. Cp₃U[C(NEt₂)=NC₆H₃Me₂-2,6]. (Reprinted with permission from <u>Journal of the Chemical Society, Dalton</u> <u>Transactions</u>.)

Cramer, et al.²⁹⁹ published the synthesis and structure of $Cp_3UCHPMe_3$. Reaction of Cp_3UCI with $Li[CH_2]_2PMe_2$ or CH_2PMe_3 gave the compound and its crystal structure was determined (Figure 130, U-C(Cp) = 2.80(1)Å, U-C(σ) = 2.274(8)Å). The short U-C bond was interpreted as a double bond. A second report³⁰⁰ described the activation of CO by U-C double bonds in Cp_3UCHPR_3.

Fig. 130. Cp₃UCHPMe₃. (Reprinted with permission from <u>Chemische Berichte</u>.)

Leonov and Solov'eva³⁰¹ investigated the carbonylation and carboxylation of Cp₃UR (R = Bu, ⁱBu). The reactions of Cp₃UCH₂CHMe₂ with N₂ and CO at 80K were studied by IR.³⁰² ²³⁷Np Mössbauer results were reported for $(Cp_3Np)_2C_2$, ^{251,252,261} Cp₃NpBu,²⁶² and Cp₃NpC₄H₂Et.²⁶²

In a further contribution to his study of geometric control of organometallic f-element compounds, Xing-Fu³⁰³ discussed the effect of steric hindrance on the structure and chemistry of Cp_3M compounds. The compound, Cp_3UMe , was used as an example. Gramoteeva³⁰⁴ prepared Cp_3UR (R = Me, Bu, ⁱBu) from the 1/30 reaction of Cp_4U and RC1.

(viii) Biscyclopentadienyl halide compounds. Zalkin. Stuart, and Andersen³⁰⁵ published the synthesis (from $K(Cp^tBu_2)$ and UCl₂) and structure of $[(Cp^tBu_2)_2UCl]_2$ (Figure 131, U-C(Cp^tBu₂) = 2.79(4)Å, U-Cl = 2.856(4)Å). Atwood and Lappert, et al.³⁰⁶ reduced Cp",UCl, with LiⁿBu or Na/Hg in the presence of THF, tmeda or pmdeta ((Me₂NCH₂CH₂)₂NMe) to produce Cp"₂U(μ -Cl)₂ML (M = Li, Na; $L = (THF)_{2}$, tmeda; M = Li, L = pmdeta). Reaction of the starting chloride with LiX (X = Cl, Br) in THF or $[PPh_{\lambda}]X$ in toluene gave $Cp"_{2}U(\mu-C1)(\mu-X)Li(THF)$, or $[PPh_{4}][Cp"_{2}UC1(X)]$. The crystal structures were reported for Cp", $U(\mu-Cl)$,Li(pmdeta) (Figure 132, U-C1 = 2.70(2)Å) and [PPh,][Cp",UC1,] (Figure 133, U-C1 = 2.666(8)Å). In a separate publication³⁰⁷ the crystal structure of the THF solvate, $Cp''_{2}U(\mu-Cl)_{2}Li(THF)_{2}$, was reported (Figure 134, U-C(Cp'') = 2.77(2)Å, U-Cl = 2.730(1)Å). This paper featured a different preparative route: Cp",UCl, was reacted with [LiP-(SiMe₃),(THF),], in THF.

Fig. 131. [(Cp^tBu₂)₂UCl]₂. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

cal Communications.)

Fig. 134. $Cp''_2U(\mu-Cl)_2Li(THF)_2$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Lappert²⁵⁹ reviewed some of his work in this area in a paper derived from a presentation at the Second International Conference on the Basic and Applied Chemistry of f-Transition (Lanthanide and Actinide) and Related Elements (Lisbon). The compounds discussed included $[Cp"_2U(\mu-F)(\mu-BF_4)]_2$, $[Cp"_2UX]_n$ (X = F, I), $Cp"_2UCl(THF)$, $[Cp"_2U(\mu-X)]_2$ (X = Cl, Br), and $[PPh_4][Cp"_2UX_2]$ (X₂ = Cl₂ or ClBr).

Koulkès-Pujo, <u>et al</u>.³⁰⁸ utilized pulse radiolysis to reduce $Cp_2^*AnCl_2$ (An = Th, U). The electronic spectra, reaction rates, and reaction order were discussed. Cyclic voltammetry studies mentioned earlier by Sonnenberger and Gaudiello²⁵⁴ were carried out on $Cp_2^*UCl_2$ and $Cp_2^*NpCl_2$.

(ix) <u>Biscyclopentadienyl hydrides</u>. Takats and Fragala, <u>et</u> <u>al</u>.³⁰⁹ studied the gas phase photoelectron spectra of $Cp_2U(BH_4)_2$. The first ionization corresponds to removal of a U 5f electron, while the next highest occupied ligand-based molecular orbital is π -ring in nature. In a review of his work with the Cp" ligand, Lappert²⁵⁹ discussed $[Cp"_2U(BH_4)]_n$, $[Cp"_2U(BH_4)(THF)]$, and $[Cp"_2U(BH_4)_2]$. Le Marechal, <u>et al.</u>²⁷⁷ reduced $Cp_2U(BH_4)_2$ in the presence of 18-crown-6 to produce $[Na(18-crown-6)][Cp_2U(BH_4)_2]$. The compound was reported to be oxidized by Tl(BH₄). Zanella, <u>et al.</u>²⁷³ published the synthesis, chemical, physical, and spectroscopic properties of $Cp_2An(BH_4)_2$ (An = Th, U), $(CpMe)_2U(BH_4)_2$, and $Cp'_2U(BH_4)_2$. Marks³¹⁰ discussed H₂ and CH activation at Cp^*_2Th centers.

(x) <u>Biscyclopentadienyl compounds with bonds to N</u>. The photoelectron spectra of $Cp_2U(NEt_2)_2$ revealed the first ionization potential to be U 5f and the second, N 2p lone pair in nature.³⁰⁹ Lappert²⁵⁹ discussed $Cp"_2An(Cl)NMe_2$, $Cp"_2An(Cl)N(SiMe_3)_2$ (An = U, Th), $Cp"_2UCl(tmeda)$, and $Cp"_2UCl(pmdeta)$ in a brief review of his Cp" actinide chemistry.

Marks, et al.³¹¹ reported the reactions of $Cp_2^*Th(Cl)Ru-(Cp)(CO)_2$ with acetonitrile to produce the diazathoracyclobutene, $Cp_2^*ThCl(C_6H_8N_3)$, and with acetone to give $Cp_2^*ThCl[O=C(Me)CH_2-C(Me)_2O]$. The crystal structure of the acetonitrile oligomerization product was determined (Figure 135, Th-C(Cp^{*}) = 2.80(2)Å, Th-N = 2.46(1)Å).

Fig. 135. $\operatorname{Cp}_{2}^{*}\operatorname{ThCl}(C_{6}H_{8}N_{3})$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1987 American Chemical Society.)

Cramer, Roth, and Gilje³¹² prepared $Cp_2^*UCl_2(HNPPh_3)$ from the reaction of $Cp_2^*UCl_2$ and $HNPPh_3$ in toluene. The crystal structure (Figure 136, U-C(Cp^*) = 2.773(1)Å, U-N = 2.43(1)Å) indicated U-H agostic interactions and N-H…Cl hydrogen bonding.

Fig. 136. $Cp_2^*UCl_2(HNPPh_3)$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Andersen, et al.³¹³ published the crystal structures of $[(CpMe)_2U(\mu-NR)]_2$ (R = Ph, SiMe₃). The NPh ligand (Figure 137, U-C(CpMe) = 2.76(2)Å, U-N = 2.156(8), 2.315(8)Å) bridges asymmetrically, while the N(SiMe₃) ligand bridges symmetrically (Figure 138, U-C(CpMe) = 2.77(5)Å, U-N = 2.224(7)Å). Zalkin and Beshouri³¹⁴ published the crystal structure of Cp"₂UCl(NCSiMe₃)₂ (Figure 139, U-C(Cp") = 2.79(2)Å, U-N = 2.61(1)Å, U-Cl = 2.698(3)Å).

Fig. 137. $[(CpMe)_2U(\mu-NPh)]_2$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1988 American Chemical Society.)

Fig. 138. $[(CpMe)_2U(\mu-NSiMe_3)]_2$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1988 American Chemical Society.)

Fig. 139. $Cp''_2UCl(NCSiMe_3)_2$. (Reprinted with permission from <u>Acta Crystallographica</u>.)

Tatsumi and Nakamura³¹⁵ carried out a molecular orbital study based on the extended Huckel method on $Cp_{2}^{*}An(bis-\eta^{2}-pyrazolates)$ and $Cp_{2}^{*}An(bis-\eta^{2}-acyls)$.

(xi) <u>Biscyclopentadienyl compounds with bonds to 0, S, P</u>. Zalkin and Beshouri³¹⁶ published the structure of $[Cp"_2U(\mu-0)]_2$ (Figure 140, U-C(Cp") = 2.77(3)Å, U-O = 2.11(2)Å). This compound was also among several discussed by Lappert.²⁵⁹ Others included Cp"₂AnClL (An = Th, U; L = $OC_6H_3^{i}Pr_2-2, 6$, $OC_6H_3Ph_2-2, 6$, $SC_6H_2^{t}Bu_3-2, 4, 6$), $[Cp"_2U(OC_6H_3Ph_2-2, 6)]_n$, and $[Cp"_2U(OC_6H_3^{i}Pr_2-2, 6)$ (THF)]. The gas phase photoelectric spectral studies by Takats and Fragala, et al.³⁰⁹ included Cp₂U(O₂CCMe₃) and Cp₂US₂CNEt₂. Cramer, Bruck, and Gilje³¹⁷ reported the structural characterization of $(Cp^*U[\mu-(CH_2)P(Ph)_2(CH_2)]_2Mg[CH_2PMePh_2]_2(\mu_3-O)(\mu_2-O)(\mu_2-Cl)_2$ (Figure 141, U-C(Cp^{*}) = 2.85(2)Å, U-C(σ) = 2.67(3), 2.60(3)Å, U-Cl = 2.93(1)Å, U-O(μ_2) = 2.13(2)Å, U-O(μ_3) = 2.18(2)Å).

Fig. 140. $[Cp"_2U(\mu-0)]_2$. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 141. $\{Cp^*U[\mu-(CH_2)P(Ph)_2(CH_2)]\}_2Mg[CH_2PMePh_2]_2(\mu_3-0)(\mu_2-0)(\mu_2-Cl)_2$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Marks, et al.³¹⁸ prepared $Cp_2^*Th(SCH_2CH_2Me)_2$ by the reaction of $Cp_2^*ThMe_2$ and a ten-fold excess of $HSCH_2CH_2Me$ in toluene. The structure is depicted in Figure 142 (Th-C(Cp^{*}) = 2.799(8)Å, Th-S = 2.718(3)Å).

Fig. 142. Cp^{*}₂Th(SCH₂CH₂Me)₂. (Reprinted with permission from Inorganica Chimica Acta.)

Andersen, Brennan, and Zalkin published three crystal structures containing Cp₂Th-P bonds. The chelating dmpe was utilized to crystallize Cp₂ThMe₂(dmpe) (Figure 143, Th-C(Cp) = 2.84(3)Å, Th-C(σ) = 2.57(1)Å, Th-P = 3.146(2)Å),³¹⁹ the isostructural Cp₂Th-Cl₂(dmpe) (Th-C(Cp) = 2.80(2)Å, Th-Cl = 2.708(2)Å, Th-P = 3.122(2)Å),³¹⁹ and Cp₂Th(Bz)₂(dmpe) (Figure 144, Th-C(Cp) = 2.83(5)Å, Th-C(σ) = 2.657(9)Å, Th-P = 3.142(2), 3.237(2)Å).³²⁰

Fig. 143. Cp₂ThMe₂(dmpe). (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 144. Cp₂Th(Bz)₂(dmpe). (Reprinted with permission from <u>Acta Crystallographica</u>.)

Bursten and Novo-Gradac³²¹ carried out qualitative X α -scattered wave molecular orbital calculations on the unsupported heterobimetallic, Cp₂ThI-RuCp(CO)₂. The bonding was found to be similar to other anionic ligands such as halides.

(xii) <u>Biscyclopentadienyl compounds with bonds to C</u>. Two crystal structures containing Th-Me and Th-CH₂Ph bonds were discussed in the preceding section.^{319,320} In addition, the structure of a Cp_2^*U phosphoylide complex containing U-CH₂-P interactions was mentioned above.³¹⁷

Tatsumi and Nakamura^{322,323} examined the electronic structures of Cp_2AnL_2 (L = alkyl, butadiene, metallacyclopentadiene, cyclobutadiene). Among the features present, molecular orbital analysis pinpointed reasons for the observed deformation in Th-C α -C β angles.

Marks and Lin³²⁴ carried out a kinetic and mechanistic study of Cp^{*}₂An-carbon sigma bond hydrogenolysis. The rate law was determined to be first order in Cp^{*}₂AnR and first order in H₂. Relative rates determined included Cp^{*}₂ThCH₂CMe₂CH₂ \approx Cp^{*}₂U(CH₂^tBu) -(O^tBu) > Cp^{*}₂Th(CH₂^tBu)(OCH^tBu₂) = Cp^{*}₂Th(CH₂^tBu)(O^tBu) > Cp^{*}₂Th-(CH₂^tBu)Cl > (CpSiMe₂Cp)Th(ⁿBu)₂ > Cp^{*}₂Th(ⁿBu)₂ \approx Cp^{*}₂ThMe₂ > Cp^{*}₂Th-Me(O₃SCF₃) > Cp^{*}₂Th(ⁿBu)(OCH^tBu₂) \approx Cp^{*}₂ThMe(OSiMe₂^tBu) > Cp^{*}₂Th(p-C₆H₄NMe₂)(O^tBu) > Cp^{*}₂Th(Ph)(O^tBu) > Cp^{*}₂UMe(OCH^tBu₂) > Cp^{*}₂ThMe-(OCH^tBu₂).

Marks, et al.³²⁵ studied C-H activation reactions of $Cp_2^*Th-(CH_2CMe_2CH_2)$. Reaction with Cp_2MMe_2 (M = Zr, Hf) or $(CpMe_2)ZrMe_2$ in hexane produced m-methylene complexes with a metallated Cp ring. The crystal structure of $Cp_2^*Th(\mu-CH_2)(\mu-1-\eta^1:\eta^5-3,4-Me_2C_5H_2)Zr(1,2-Me_2C_5H_3)Me$ was determined (Figure 145, Th-C(Cp^*) = 2.837(8)Å, Th-C($\mu-CH_2$) = 2.377(8)Å, Th-C($m-CpMe_2$) = 2.483(8)Å).

 $Cp_{2}^{*}Th(\mu-CH_{2})(\mu-1-\eta^{1}:\eta^{5}-3,4-Me_{2}C_{5}H_{2})Zr(1,2-Me_{2}C_{5}H_{3})Me.$ (Reprinted with permission from <u>Journal of the Amer-</u> Fig. 145. ican Chemical Society. Copyright 1987 American Chemical Society.)

Marks and Hedden³²⁶ carried out ¹³C CPMAS solid-state NMR studies of Cp^{*}₂ThMe₂ on MgCl₂ and observed surface alkylation and ethylene insertion polymerization. These studies supported transfer of a methyl group to the solid surface and formation of Cp^{*}₂ThMe⁺. A second contribution by Marks, <u>et al</u>.³²⁷ discussed the isolation and characterization of the Cp*,ThMe(THF),* cation in $[Cp_{2}^{*}ThMe(THF)_{2}][BPh_{4}]$ (Figure 146, Th-C(Cp^{*}) = 2.80(1)Å, Th-C(σ) = 2.49(1)Å). The compound was prepared by reaction of Cp^{*}, ThMe, with $[R_xN][BPh_{\ell}]$ (R = Me, Et) in toluene. In a similar fashion, References p. 211

 $[Cp_{2}^{*}Th(o-C_{6}H_{4}CH_{2}NMe_{2})][BPh_{4}]$ was prepared from $Cp_{2}^{*}Th(o-C_{6}H_{4}CH_{2}NMe_{2})Me$.

Fig. 146. The cation in [Cp^{*}₂ThMe(THF)₂][BPh₄]. (Reprinted with permission from <u>Journal of the American Chemical</u> <u>Society</u>. Copyright 1987 American Chemical Society.)

Cramer, et al.³²⁸ produced the bridging phosphoylides, $Cp_{2}^{*}AnCl[(CH_{2})(CH_{2})PRR']$ (An = Th, U; RR' = MePh, Me₂, Ph₂) by reaction of $Cp^{*}AnCl_{2}$ with $Li(CH_{2})(CH_{2})PRR'$. The crystal structures of $Cp_{2}^{*}UCl[(CH_{2})(CH_{2})PPhR]$ (R = Me, Ph) were crystallographically determined. R = Me is shown in Figure 147 (U-C(Cp^{*}) = 2.776(7)Å, U-Cl = 2.658(2)Å, U-C(σ) = 2.60(1)Å) and R = Ph in Figure 148 (U-C(Cp^{*}) = 2.80(1)Å, U-Cl = 2.680(8)Å, U-C(σ) = 2.58(1)Å). The crystal structures of Cp"₂UBr(CN^tBu)₂ (U-C(σ) = 2.662(8), 2.697(7)Å, Figure 149)³²⁹ and Cp"₂UCl(CN-2,6-dimethylphenyl)₂ (U-C(σ) = 2.654(9), 2.681(9)Å, Figure 150)³³⁰ appeared.

Fig. 147. Cp^{*}₂UCl[(CH₂)(CH₂)PPhMe]. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Fig. 148. Cp^{*}2UCl[(CH₂)(CH₂)PPh₂]. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Fig. 149. Cp", UBr(CN^tBu), (Reprinted with permission from <u>Acta Crystallographica</u>.)

Fig. 150. Cp"₂UCl(CN-2,6-dimethylphenyl)₂. (Reprinted with permission from <u>Acta Crystallographica</u>.)

 $Cp_2^*UMe_2$ and $Cp_2^*ThMe_2$ were utilized by Harrod, <u>et al.</u>³³¹ as catalysts for the dehydrocoupling of phenylsilane. These com-

pounds were ruled out as practical catalysts.

(xiii) <u>Bridged-biscyclopentadienyl compounds</u>. Marks, <u>et</u> <u>al</u>.³³² published a detailed account of the synthesis, structures, and reactivity of thorium hydrocarbyls and hydrides with the bridging-Cp ligand $C_5Me_4SiMe_2C_5Me_4^{2-}$ (Cp₂[‡]). Li₂(Cp₂[‡]) (dme)₂ was reacted with ThCl₄ to give (Cp₂[‡])ThCl₂·2LiCl(dme). This complex was alkylated to yield Cp₂[‡]ThR₂ (R = CH₂SiMe₃, CH₂CMe₃, C₆H₅, "Bu, Bz). The R = CH₂SiMe₃ compound was crystallographically characterized (Figure 151, Th-C(Cp₂[‡]) = 2.79(2)Å, Th-C(σ) = 2.54(2), 2.48(2)Å). Hydrogenolysis of this compound led to [Cp₂[‡]Th]₂(μ -H)₄ which was also crystallographically characterized (Figure 152, Th-C(Cp₂[‡]) = 2.81(7)Å, Th···Th = 3.632(2)Å).

Fig. 151. Cp₂[‡]Th(CH₂SiMe₃)₂. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical Society.)

Fig. 152. $[Cp_2^{+}Th]_2(\mu-H)_4$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1988 American Chemical

Society.)

(xiv) <u>Monocyclopentadienyl compounds</u>. Leonov, <u>et al</u>.²⁵³ studied the mechanism of reaction of CpUCl₃ with O₂. ²³⁷Np Mössbauer data was presented for (CpMe)NpCl₃ by Spitsyn, <u>et al</u>.²⁷¹ Dormond, <u>et al</u>.³³³ investigated CpUCl₂R (R = Me, Et, ⁿBu) in alkylation reactions of carbonyl compounds. Lappert, <u>et al</u>.²⁵⁹ included Cp"AnL₂ (L = Cl, Br, I, BH₄, CH₂SiMe₃, CH₂Ph, OC₆H₃Me₂-2,6) in his account of the Cp" chemistry of U and Th. Atwood and Lappert, <u>et al</u>.³³⁴ published the crystal structure of Cp""UCl₂-(THF) (μ -Cl)₂Li(THF)₂ (Cp"" = 1,2,4-(SiMe₃)₃C₅H₂); Figure 153, U-C(Cp"") = 2.69-2.76Å, U-Cl(terminal) = 2.606(4)Å, U-Cl(μ -Cl) = 2.730(4)Å).

Fig. 153. $Cp^{\prime\prime\prime}UCl_2(THF)(\mu-Cl)_2Li(THF)_2$. (Reprinted with permission from <u>Inorganica Chimica Acta</u>.)

Sattelberger, <u>et al</u>.³³⁵ discussed the preparation and use of $UI_3(THF)_4$ in organouranium chemistry. The compound $Cp^*UI_2(THF)_3$ was prepared by reaction of the reagent with KCp^* in THF.

Sattelberger, Gilbert, and Ryan³³⁶ reacted (COT)ThCl₂(THF)₂ with Cp^{*}MgCl(THF) in toluene to produce the mixed ring Cp^{*}(COT)-ThCl(THF)_n. Treatment with Me₃CCH₂MgCl in THF/OEt₂ produced Cp^{*}(COT)Th(μ -Cl)₂Mg(CH₂CMe₃)(THF) (Figure 154, Th-centroid(Cp^{*}) = 2.54Å, Th-centroid(COT) = 2.02Å, Th-Cl = 2.890(6)Å). Metathesis reactions of Cp^{*}(COT)ThCl(THF)_n led to Cp^{*}(COT)ThN(SiMe₃)₂ and Cp^{*}(COT)ThCH(SiMe₃)₂. The latter was structurally characterized (Figure 155, Th-centroid(Cp^{*}) = 2.54Å, Th-centroid(COT) = 2.03Å, Th-C(σ) = 2.54(1)Å). An agostic Th…H-C interaction was proposed.

Fig. 154. $Cp^*(COT)Th(\mu-Cl)_2Mg(CH_2CMe_3)(THF)$. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Fig. 155. Cp^{*}(COT)ThCH(SiMe₃)₂. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Zanella, et al.²⁷³ prepared and studied $CpU(BH_4)_3$ and $(CpMe)U-(BH_4)_3$. Ryan et al.³³⁷ prepared $[Na(THF)_6][Cp^*U(BH_4)_3]_2$ by reaction of $U(BH_4)_3(THF)_n$ with $Cp^*_2Th(PPh_2)_2$. The crystal structure is shown in Figure 156 $(U-C(Cp^*) = 2.74\text{\AA}, U^{\cdots}B = 2.61\text{\AA})$. The BH₄ ligands are tridentate.

Fig. 156. The mixed valent anions in $[Na(THF)_6][Cp^*U(BH_4)_3]_2$. (Reprinted with permission from <u>Inorganica Chimica</u><u>Acta</u>.)

Ephritikhine, et al. published two reports on derivatives of $U(BH_4)_4$. The synthesis and characterization of $CpU(BH_4)_3$ from the reaction of $U(BH_4)_4$ with TlCp was in one.³³⁸ The second³³⁹ focused on the structure and ligand exchange reactions of $CpU(BH_4)_3L_2$ (L = THF, dme, hexamethylphosphoramide, OPPh₃) in solution. A third contribution by these authors³⁴⁰ reported the crystal structure of CpUCl(acac)₂(OPPh₃) THF (Figure 157, U-C(Cp) = 2.79(1)Å, U-O(acac) = 2.35(1)Å, U-Cl = 2.662(8)Å, U-O(OPPh_3) = 2.40(1)Å).

Fig. 157. CpUCl(acac)₂(OPPh₃) THF. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

The anion in $[Cp_3U(NCMe)_2][CpThCl_4(NCMe)]$ published by Rebizant²⁸⁰ (and discussed earlier) exhibited bonding parameters of Th-C(Cp) = 2.77(3)Å, Th-Cl = 2.658(8)Å, and Th-N = 2.58(3)Å (Figure 158).

Fig. 158. The anion in [Cp₃U(NCMe)₂][CpThCl₄(NCMe)]. (Reprinted with permission from <u>Inorganica Chimica Acta</u>.)

Marques, et al.³⁴¹ briefly reviewed their work with pyrazolyl ligands and U⁴⁺, Th⁴⁺. The compounds discussed included CpAnCl-[HB(3,5-Me₂pyrazolyl)₃](OR) (An = Th, U; R = ^tBu, ⁱPr, C₆H₂-2,4,6-Me₃). Brianese, et al.³⁴² reported the preparation of [Cp(CH₃COO)₅U₂O]₂ by reaction of [Cp₂U(AlH₄)₂] nEt₂O with CH₃COOH. Its crystal structure (Figure 159) revealed both inorganic and organometallic uranium within the four metal cluster. Synthetic routes to [Cp₂U(AlH₄)₂NEt₂]Li and [Cp₂U(AlH₄)₂] nEt₂O from Cp₂U-(NEt₂)₂ or Cp₂U(BH₄)₂ and LiAlH₄ were also detailed.

Fig. 159. $[Cp(CH_{3}COO)_{5}U_{2}O]_{2}$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Baudry, et al.³⁴³ published the synthesis of $[Na(18-crown-6)][Cp_2U(BH_4)_2]$ from the sodium amalgam reduction of $Cp_2U(BH_4)_2$. The crystal structure of $CpU(BH_4)_3$ (Figure 160) was also reported.

Fig. 160. CpU(BH₄)₃. (Reprinted with permission from <u>Journal</u> <u>of Organometallic Chemistry</u>.)

(xv) <u>Indenyl compounds</u>. The crystal structures of $(\eta^3 - \text{Ind})_3 \text{UX}$ (X = Br,³⁴⁴ I³⁴⁵) and $(\eta^5 - \text{Ind})_2 \text{U}(\text{BH}_4)_2^{346}$ were published by Goffart, <u>et al</u>. The two trisindenyl compounds are geometrically similar but not isostructural. The bromo analog is depicted in Figure 161 (X = Br: U-Br = 2.747(2)Å, U-C(η^3 -Ind) = 2.68(6)-2.91(3)Å; X = I: U-I = 3.041(1)Å, U-C(η^3 -Ind) = 2.57(7)-2.85(2)Å). The borohydride exhibits pentahapto indenyls (U-C = 2.62(2)-2.82(2)Å), and tridentate BH₄ coordination (Figure 162).

Fig. 161. $(\eta^3$ -Ind)₃UBr. (Reprinted with permission from <u>Acta</u> <u>Crystallographica</u>.)

Fig. 162. $(\eta^5-\text{Ind})_2 U(BH_4)_2$. (Reprinted with permission from <u>Acta Crystallographica</u>.)

Beeckman and Goffart³⁴⁷ recorded the $N_2(\ell)$ and $He(\ell)$ temperature spectra of $(1-EtInd)_3UCl$. The parameters obtained were used to calculate the temperature dependence of the paramagnetic susceptibility. Goffart, <u>et al</u>.³⁴⁸ reported a new preparation of $(Ind)_4$ Th by treatment of $(Ind)_3$ ThCl with potassium metal in boiling benzene. They also published bond disruption enthalpies for $(Ind)_3AnR$ and $(1-EtInd)_3AnR$ (An = U, Th; R = Me, CH₂C₆H₅, CH₂SiMe₃, CHMe₂, OCH₂CF₃).³⁴⁹

(xvi) <u>Cyclooctatetraene compounds</u>. The crystal structures and chemistry of mixed Cp^{*}COT Th compounds including Cp^{*}(COT)Th-CH(SiMe₃)₂ and Cp^{*}(COT)Th(μ -Cl)₂Mg(CH₂CMe₃)(THF) were discussed in section (xiv).³³⁶ REX calculations mentioned in section (i) for Cp₄An were also discussed for (COT)₂An.²⁵⁷ ²³⁷Np Mössbauer data were reported for (COT)₂Np^{256,271} and K[(COT)₂Np].²⁷¹ ¹H NMR spectra of solid powders of (COT)₂U were measured as discussed for Cp₃UCl in section (iii).^{268,269}

Boerrigter, <u>et al</u>.³⁵⁰ published the results of a relativistic LCAO Hartree-Fock-Slater investigation of the electronic structures of $(COT)_2An$ (An = Th, Pa, U, Np, Pu). Chang and Pitzer³⁵¹ computed the wave functions and energy levels for $(COT)_2U$ using ab initio techniques which included spin-orbit interaction and relativistic core potentials.

Leonov, et al.³⁰² studied complex formation of $(COT)_2U$ with N₂ and CO at 80K by IR. Kuznetsov, et al.³⁵² determined the heats of combustion, fusion, and evaporation of 1,1'-dibutyluranocene. Streitwieser, et al.³⁵³ prepared 1,1',5,5'-tetra-<u>tert</u>butyluranocene. Cloke, et al.^{354,185} prepared the sandwich compounds (1,4-(SiMe₃)₂C₈H₆)₂An (An = Th, U) and (1,4-(SiMe₃)₂C₈H₆)U(η^{3} -BH₄)₂.

Gilbert, Ryan, and Sattelberger³⁵⁵ described an improved synthesis of (COT)ThCl₂(THF)₂. Reaction of NaN(SiMe₃)₂ with this compound or its U analog produced (COT)An[N(SiMe₃)₂]₂. The crystal structure of An = Th was determined (Th-C(COT) = 2.75(2)Å, Th-N = 2.34(1)Å). Agostic Th…HCSi interactions were noted.

(xvii) <u>Arene and pentadienyl compounds</u>. $(\eta^{6}-C_{6}Me_{6})U(AlCl_{4})_{3}$ was prepared.²⁰¹ The crystal structure is similar (but not isostructural) with the Sm analog shown in Figure 99^{201} (U-C(η^{6}) = 2.94(3)Å). Sattelberger, <u>et al.</u>³⁵⁶ crystallized U(O-2, 6-R₂C₆H₃)₃ (R = ^tBu, ⁱPr) from the reaction of U[N(SiMe_{3})_{2}]_{3} with the corresponding alcohol. The R = ⁱPr derivative was structurally characterized (Figure 163) and possesses an η^{6} -arene bridge (U-C(η^{6}) = 2.92(2)Å).

Fig. 163. $U(0-2,6-{}^{i}Pr_{2}C_{6}H_{3})_{3}$. (Reprinted with permission from <u>Journal of the American Chemical Society</u>. Copyright 1988 American Chemical Society.)

Baudry, et al.^{357,358,343} reported the preparation of $(\eta^{6}-mesitylene)U(BH_{4})_{3}$ (Figure 164 by x-ray analysis) by thermal decomposition of $U(BH_{4})_{4}$ in mesitylene. In toluene the reaction of $U(BH_{4})_{4}$ with potassium dienylanions produced $(\eta^{5}-2,4-dimethyl-pentadienyl)U(BH_{4})_{3}$ crystal structure - Figure 165 and $(\eta^{5}-6,6-dimethylcyclohexadienyl)_{2}U(BH_{4})_{2}$.³⁴³ Reactions of the homoleptic uranium pentadienyls with Tl(BH₄) produced $(\eta^{5}-2,4-dimethylpenta-dienyl)_{2}U(BH_{4})_{2}$ and $(\eta^{5}-6,6-dimethylcyclohexadienyl)U(BH_{4})_{3}$. In a second publication with Ephritikhine,³⁵⁹ cationic and anionic forms of these compounds were isolated. Sattelberger, et al.³³⁵

prepared $(\eta^5-2, 4-\text{dimethylpentadienyl})_3 U$ by utilizing UI₃(THF)₄.

Fig. 164. $(\eta^6-\text{mesitylene})U(BH_4)_3$. (Reprinted with permission from <u>Journal of Organometallic Chemistry</u>.)

Fig. 165. $(\eta^5-2, 4-\text{dimethylpentadienyl})U(BH_4)_3$. (Reprinted with permission from <u>Journal of Organometallic Chemis-</u> <u>try</u>.)

Alkyl and allyl compounds without cyclopentadienyl ligands

Andersen and Stewart³⁶⁰ published the reaction of LiMe and $U[OCH(CMe_3)_2]_4$ which yielded $UMe[OCH(CMe_3)_2]_2[\mu-OCH(CMe_3)_2]_2Li$. The crystal structure revealed a square pyramidal geometry at U with U-Me = 2.465(7)Å (Figure 166, U-O(μ) = 2.262(4)Å, U-O(terminal) = 2.103(2)Å).

Fig. 166. UMe[OCH(CMe₃)₂]₂[μ -OCH(CMe₃)₂]₂Li. (Reprinted with permission from <u>Journal of the Chemical Society</u>, <u>Chemical Communications</u>.)

Sattelberger, et al.³⁶¹ studied the reaction of U(0-2,6-^tBu₂C₆H₃)₃ with LiCH(SiMe₃)₂ which produced the first homoleptic uranium alkyl, U[CH(SiMe₃)₂]₃. The crystal structure (Figure 167) revealed a U-C(σ) bond length of 2.48(2)Å and probable γ -agostic interactions with some of the methyl groups. The compound could not be prepared from UCl₃(THF)_n and LiCH(SiMe₃)₂, however, [Li(THF)₃][UCl(CH(SiMe₃)₂)₃] was isolated from this reaction.

Fig. 167. U[CH(SiMe₃)₂]₃. (Reprinted with permission from <u>Organometallics</u>. Copyright 1989 American Chemical Society.)

Rothwell, et al.³⁶² prepared $\text{ThCl}_2(\text{CH}_2-\text{py-6Me})_2$ from ThCl_4 and excess $\text{LiCH}_2-\text{py-6Me}$ (CH₂-py-6Me = 2-(6-methylpyridyl)methyl). Further reaction with LiOAr' (OAr' = 2,6-di-<u>tert</u>-butylphenoxide) yielded $\text{Th}(\text{OAr'})_2(\text{CH}_2-\text{py-6Me})_2$. The crystal structure of this compound (Figure 168) revealed both pyridyl ligands to be chelating (Th-C = 2.55(1)Å, Th-N = 2.61(1)Å, Th-O = 2.190(9)Å).

Fig. 168. Th(OAr')₂(CH₂-py-6Me)₂. (Reprinted with permission from <u>Organometallics</u>. Copyright 1987 American Chemical Society.)

Ephritikhine and Baudin³⁶³ prepared the compounds $U({}^{t}Bu_{3}CO)_{2}L_{2}$ (L = CH₂Ph, η^{3} -C₃H₅). Toropov, <u>et al</u>.³⁶⁴ studied the reaction of $(\eta^{3}$ -C₃H₄)_{4}U with OP(OBu)₃.

Dormond, et al. published several accounts of the reactivity of the U-C sigma bond and its utility in organic reactions. A brief overview of this work with insertion reactions and nucleophilic substitution reactions in $UMe[N(SiMe_3)_2]_3$ and $UCH_2SiMe_2N-SiMe_3[N(SiMe_3)_2]_2$ can be found in reference 365. The latter compound is the focus of four other publications, one³⁶⁶ on its use as a mild reagent for the synthesis of methyl ketones from nitriles, another³⁶⁷ on methylenation of carbonyl compounds, and two additional publications^{368,369} on the insertion reactions of this metallocycle with polycyclic ketones and cyclohexanones. Two other publications^{333,370} highlighted $UMe[N(SiMe_3)_2]_3$ as a highly selective nucleophile in chemo- and stereoselective alkylation reactions of carbonyl compounds.

REFERENCES

1.	R.D. Ernst and T.J. Marks, J. Organomet. Chem., 318 (1987) 29.
2.	J.D. Miller, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 83 (1986) 357-379.
3.	J.D. Miller, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem., 84 (1987) 285-305.
4.	M.J. Winter, Organomet. Chem., 15 (1987) 229-264.
5.	M.J. Winter, Organomet. Chem., 18 (1989) 200-237.
6.	M.J. Winter, Organomet. Chem., 17 (1989) 206-243.
7.	W.J. Evans, Polyhedron, 6 (1987) 803-835.
8.	W.J. Evans, ACS Symp. Ser., 333 (1987) 278-289.
9.	I.P. Beletskaya, G.Ž. Suleimanov, Metalloorg. Khim., 1 (1988) 10-24.
10.	S.J. Śwamy, Proc. Indian Natl. Sci. Acad., Part A, 55 (1989) 261-272.
11.	GX. Xu, J. Ren, CH. Huang and JG. Wu, Pure & Appl. Chem., 60 (1988) 1145-1152.
12.	Q. Shen, W. Chen, Y. Jin and C. Shan, Pure & Appl. Chem., 60 (1988) 1251-1256.
13.	M.N. Bochkarev, Proc. Indian Natl. Sci. Acad., Part A, 55 (1989) 170-187.
14.	V.M. Bulychev, G.L. Soloveichik, V.K. Bel'skii and A.I. Sizov, Metallorg, Khim., 2 (1989) 82-92.
15.	W.J. Evans and M.A. Hozbor, J. Organomet. Chem., 326 (1987) 299-306.
16.	H.B. Kagan, Inorg. Chim. Acta, 140 (1987) 3-6.
17.	H.B. Kagan, M. Sasaki and J. Collin, Pure & Appl. Chem., 60
	(1988) 1725-1730.
18.	B.E. Kahn and R.D. Rieke, Chem. Rev., 88 (1988) 733-745.
19.	M.N. Bochkarev, G.S. Kalinina, L.N. Zakharov and S.
	Ya, Organic Derivatives of Rare Earth Elements, Mos-
	cow, USSR, 1989.

- I.P. Rothwell, Act. Funct. Alkanes, in: C.L. Hill 20. (Ed.), New York, N.Y., 1989, pp. 151-194.
- 21. T.J. Marks, M.R. Gagne, S.P. Nolan, L.E. Schock, A.M. Seyam and D. Stern, Pure Appl. Chem. 61 (1989) 1665-1672.
- 22. A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson and R. Taylor, J.C.S., Dalton Trans., (1989) S1-S83.
- J. Marcalo and A. Pires de Matos, Polyhedron, 8 (1989) 23. 2431-2437.
- 24. C.J. Burns and B.E. Bursten, Comments Inorg. Chem., 9 (1989) 61-93.

25. G. Yang, Y. Fan, Z. Jin, Y. Xing and W. Chen, J.

- Organomet. Chem., 322 (1987) 57-63. S.J. Swamy and H. Schumann, J. Organomet. Chem., 334 (1987) 26. 1-7.
- H. Schumann, I. Albrecht, M. Gallagher, E. Hahn, C. Janiak, 27. C. Kolax, J. Loebel, S. Nickel and E. Palamidis, Polyhedron, 7 (1988) 2307-2315.
- J. Zhongsheng, H. Ninghai, L. Yi, X. Xiaolong and L. Guozhe, Inorg. Chim. Acta, 142 (1988) 333-336. Y. Li, X. Xu and G. Liu, Youji Huaxue, 8 (1988) 43-45. X. Li, J. Liu and G. Liu, Yingyong Huaxue, 6 (1989) 28.
- 29. 30.
- 62-64.
- R. Zhang, G. Yu and T. Ye, Zhenkong Kexue Yu Jishu, 8 31. (1988) 89-90.
- G. Nie, J. Wang and W. Chen, Yingong Huaxue, 6 (1989) 32. 60-62.
- 33. Y. Wang, W. Chen and B. Zhang, Yingyong Huazue, 6 (1989) 37-41.
- 34. A. Zalkin and D. Berg, Acta Cryst., C45 (1989) 1630-1631.
- 35. C.J. Burns, D.J. Berg and R.A. Andersen, J.C.S., Chem. Comm., (1987) 272-273.
- A.L. Wayda, J. Organomet. Chem., 361 (1989) 73-78. 36. P.N. Hazin, J.C. Huffman and J.W. Bruno, Organometallics, 6 37.
- (1987) 23-27.
- P.S. Gradeff, K. Yunlu, T.J. Deming, J.M. Olofson, J.W. 38. Ziller and W.J. Evans, Inorg. Chem., 28 (1989) 2600-2604.
- 39. H. Ma and X. Ye, J. Organomet. Chem., 326 (1987) 369-374.
- L. Yang, L. Dai, H. Ma and Z. Ye, Organometallics, 8 (1989) 40. 1129-1133.
- Z. Ye, Y. Yu and H. Ma, Polyhedron, 7 (1988) 1095-41. 1100.
- 42. Z. Ye and Z. Wu, Synth. React. Inorg. Met.-Org. Chem., 19
- (1989) 157-168. Z. Wu, Z. Ye and Z. Zhou, Polyhedron, 8 (1989) 2109-2113. K. Jacob, M. Glanz, K. Tittes and K.-H. Thiele, Z. Anorg. 43.
- 44. Allg. Chem., 556 (1988) 170-178.
- 45. H.J. Heeres, A. Meetsma and J.H. Teuben, J.C.S., Chem. Comm., (1988) 962-963.
- H.J. Heeres, A. Meetsma, J.H. Teuben and R.D. Rogers, 46. Organometallics, 8 (1989) 2637-2646.
- H.J. Heeres, J.H. Teuben and R.D. Rogers, J. 47. Organomet. Chem., 364 (1989) 87-96.
- 48. M.Booij, N.H. Kiers, H.J. Heeres and J.H. Teuben, J. Organomet. Chem., 364 (1989) 79-86.
- 49. H. van der Heijden, C.J. Schaverien and A.G. Orpen, Organometallics, 8 (1989) 255-258.

212

- C.J. Schaverien, H. van der Heijden and A.G. Orpen, 50.
- Polyhedron, 8 (1989) 1850-1852. H. van der Heijden, P. Pasman, E.J.M. de Boer, C.J. Schaverien and A.G. Orpen, Organometallics, 8 (1989) 1459-51. 1467.
- M. Booij, N.H. Kiers, A. Meetsma, J.H. Teuben, W.J.J. Smeets and A.L. Spek, Organometallics, 8 (1989) 2454-2461. 52.
- H. Schumann, R.D. Koehn, F.W. Reier, A. Dietrich and J. Pickardt, Organometallics, 8 (1989) 1388-1392.
 H. Schumann, C. Janiak, R.D. Kohn, J. Loebel and A. Dietrich, J. Organomet. Chem., 365 (1989) 137-150. 53.
- 54.
- 55. P. Bruin, M. Booij, J. H. Teuben and A. Oskam, J. Organomet. Chem., 350 (1988) 17-23. H. Schumann, J.A. Meese-Marktscheffel and A. Dietrich,
- 56. J. Organomet. Chem., 377 (1989) C5-C8. E.B. Lobkovskii, A.N. Chekhlov, S.Y. Knyazhanskii,
- 57. B.M. Bulychev and G.L. Soloveichik, Metalloorg. Khim., 2 (1989) 1190-1191.
- P.N. Hazin, J.W. Bruno and H.G. Brittain, Organometallics, 58. 6 (1987) 913-918.
- K. Jacob, J. Glanz, K. Tittes, K.-H. Thiele, I. Pavlik 59. and A. Lycka, Z. Anorg. Allg, Chem., 577 (1989) 145-154.
- Y.B. Zverev, I.V. Runovskaya, S.G. Chesnokova, N.P. 60. Chernyaev and P.E. Gaivoronskii, Vysokochist. Veshchestva, 6 (1988) 141-143.
- H.D. Kaesz (Ed.) Inorganic Synthesis, 29, John Wiley & Sons, Inc., New York, 1989, pp. 17-23. 61.
- J. Rebizant, C. Apostolidis, M.R. Spirlet and B. 62. Kanellakopulos, Acta Cryst., C44 (1988) 614-616.
- S.H. Eggers, J. Kopf and R.D. Fischer, Acta Cryst., C43 63. (1987) 2288-2290.
- 64. A Hammel, W. Schwarz and J. Weidlein, J. Organomet. Chem., 363 (1989) C29-C35.
- W.J. Evans and T.A. Ulibarri, J. Am. Chem. Soc., 109 (1987) 65. 4292-4297.
- G.K. Borisov, A.I. Kuz'michev, N.N. Ryzhikova and V.N. 66. Sinev, Zh. Obshch. Khim., 58 (1988) 71-76.
- G. Paolucci, R.D. Fischer, H. Breitbach, B. Pelli and P. 67. Traldi, Organometallics, 7 (1988) 1918-1923.
- 68. R.G. Bulgakov, S.P. Kuleshov, V.N. Khandozhko, I.P. Beletskaya, G.A. Tolstikov and V.P. Kazakov, Izv. Akad. Nauk SSSR, Ser. Khim., 8 (1988) 1937.
- 69. C. Qian, Y. Ge, D. Deng and Y. Gu, Huaxue Xuebao, 45 (1987) 210-212.
- M.N. Bochkarev, A.A. Trifonov, G.A. Razuvaev, M.A. Ilatovskaya, V.B. Shur and M.E. Vol'pin, Dokl. Akad. Nauk 70.
- SSSR, 295 (1987) 1381-1384. J. Weber, A. Molassioti, M. Moser, A. Stapor, F. Scholz, G. Horcher, A. Forchel, A. Hammel, G. Laube and J. Weidlein, Appl. Phys. Lett, 53 (1988) 2525-2527. S.H. Eggers, M. Adam, E.T.K. Haupt and R.D. Fischer, Inorg. Chim. Acta, 139 (1987) 315-318. 71.
- 72.
- J.G. Brennan, S.D. Stults, R.A. Andersen and A. Zalkin, 73. Inorg. Chim. Acta, 139 (1987) 201-202.
- H.-D. Amberger and H. Schultze, Spectrochim. Acta, 43A 74. (1987) 1301-1306.

- H.-D. Amberger, H. Schultze, H. Reddmann, G.V. Shalimoff 75. and N.M. Edelstein, J. Less-Common Met., 149 (1989) 249-253.
- G.B. Deacon, C.M. Forsyth, R.H. Newnham and T.D. Tuong, 76. Aust. J. Chem., 40 (1987) 895-906.
- G.B. Deacon, B.M. Gatehouse, S.N. Platts and D.L. 77. Wilkinson, Aust. J. Chem., 40 (1987) 907-914. M.R. Spirlet, J. Rebizant, C. Apostolidis and B.
- 78. 79.
- Kanellakopulos, Acta Cryst., C43 (1987) 2322-2324.
 M.R. Spirlet, J. Rebizant, C. Apostolidis and B.
 Kanellakopulos, Inorg. Chim. Acta, 139 (1987) 211-213.
 H. Schumann, C. Janiak and J. Pickardt, J. Organomet.
- 80. Chem., 349 (1988) 117-122. S. Stults and A. Zalkin, Acta Cryst., C43 (1987) 430-432.
- 81.
- J.G. Brennan, S.D. Stults, R.A. Andersen and A. Zalkin, 82. Organometallics, 7 (1988) 1329-1334.
- A. Gulino, M. Casarin, V.P. Conticello, J.G. Gaudiello, H. Mauermann, I. Fragala and T.J. Marks, Organometallics, 7 83. (1988) 2360-2364.
- W.J. Evans, T.J. Deming and J.W. Ziller, 84. Organometallics, 8 (1989) 1581-1583.
- R.G. Bulgakov, S.P. Kuleshov, V.N. Khandozhko, I.P. 85. Beletskaya, G.A. Tolstikov and V.P. Kazakov, Izv. Akad. Nauk SSSR, Ser. Khim., 7 (1988) 1689-1690.
- H. Gao, Q. Shen, J. Hu, S. Jin and Y. Lin, Chin. Sci. 86. Bull., 34 (1989) 614.
- 87.
- W.J. Evans, Inorg. Chim. Acta, 139 (1987) 169-170. W.J. Evans and T.A. Ulibarri, Polyhedron, 8 (1989) 1007-88. 1014.
- S.J. Swamy, J. Loebel, J. Pickardt and H. Schumann, J. 89.
- Organomet. Chem., 353 (1988) 27-34. G.B. Deacon, D.L. Wilkinson and R.L. Davis, Inorg. Chim. Acta, 142 (1988) 329-331. 90.
- A. Hammel, W. Schwarz and J. Weidlein, J. Organomet.
 Chem., 378 (1989) 347-361.
 R.A. Andersen, R. Blom, J.M. Boncella, C.J. Burns and H.V. 91.
- 92. Volden, Acta Chem. Scand., A41 (1987) 24-35.
- C.J. Burns and R.A. Andersen, J.C.S., Chem. Comm., 93. (1989) 136-137.
- G.B. Deacon, B.M. Gatehouse and P.A. White, 94. Polyhedron, 8 (1989) 1983-1987. H. Lueken, W. Lamberts and P. Hannibal, Inorg. Chim.
- 95. Acta, 132 (1987) 111-118.
- H. Lueken, J. Schmitz, W. Lamberts, P. Hannibal and K. 96. Handrick, Inorg. Chim. Acta, 156 (1989) 119-124.
- W. Lamberts, H. Lueken and B. Hessner, Inorg. Chim. Acta, 97. 134 (1987) 155-157.
- W. Lamberts and H. Lueken, Inorg. Chim. Acta, 132 98. (1987) 119-122.
- 99. W. Lamberts, B. Hessner and H. Lueken, Inorg. Chim. Acta, 139 (1987) 215-217.
- 100. G.Z. Suleimanov and I.P. Beletskaya, Metalloorg. Khim., 2 (1989) 704.
- 101. W.J. Evans, D.K. Drummond, J.W. Grate, H. Zhang and J.L. Atwood, J. Am. Chem. Soc., 109 (1987) 3928-3936. 102. Q. Shen and P. Zhou, Kexue Tongbao, 32 (1987) 28-30.
- 103. K.H. den Haan and J.H. Teuben, J. Organomet. Chem., 322 (1987) 321-329.

214

- 104. W.J. Evans, J.M. Olofson, H. Zhang and J.L. Atwood, Organometallics, 7 (1988) 629-633.
- 105. L. Gong, A. Streitwieser, Jr. and A. Zalkin, J.C.S., Chem. Comm., (1987) 460-461.
- 106. H. Schumann, J. Loebel, D. van der Helm and M.B. Hossain, Z. Naturforsch., (1988) 323-327.
- 107. Z. Jin, Y. Liu and W. Chen, Sci. Sin., Ser. B, 30 (1988) 1136-1143.
- 108. H. Yasuda, H. Yamamoto, K. Yokota and A. Nakamura, Chem. Lett., (1989) 1309-1312.
- 109. V.K. Bel'skii, S.U. Knyazhanskii, B.M. Bulychev and G.L.
- Soloveichik, Metalloorg. Khim., 2 (1989) 567-569.
 110. Y.K. Gun'ko, V.K. Bel'skii, A.I. Sizov, B.M. Bulychev and G.L. Soloveichik, Metalloorg. Khim., 2 (1989) 1125-1128.
 111. V.K. Bel'skii, S.Y. Knyazhanskii, B.M. Bulychev and G.L.
- Soloveichik, Metalloorg. Khim., 2 (1989) 754-756.
- 112. S.P. Nolan, D. Stern and T.J. Marks, J. Am. Chem. Soc., 111 (1989) 7844-7853.
- 113. L. Shi, H. Ma, Y. Yu and Z. Ye, J. Organomet. Chem., 339 (1988) 277-282.
- 114. F. Shen and Z. Ye, Youji Huaxue, (1987) 128-132.
- 115. R. Chen, Z. Gu, J. Zhu and Z. Ye, Zhongguo Xita Xuebao, 6 (1988) 85-87.
- 116. W.J. Evans, D.K. Drummond, L.A. Hughes, H. Zhang and J.L. Atwood, Polyhedron, 7 (1988) 1693-1703.
- 117. W.J. Evans, M.A. Hozbor, S.G. Bott, G.H. Robinson and J.L. Atwood, Inorg. Chem., 27 (1988) 1990-1993.
- 118. G.B. Deacon and D.L. Wilkinson, Aust. J. Chem., 42 (1989) 845-854.
- 119. R.G. Finke, S.R. Keenan, D.A. Schiraldi and P.L. Watson, Organometallics, 6 (1987) 1356-1358.
- 120. J.L. Namy, J. Collin, J. Zhang and H.B. Kagan, J. Organomet. Chem., 328 (1987) 81-86.
- 121. A.A. Trifonov, M.N. Bochkarev and G.A. Razuvaev, Zh.
- Obshch. Khim., 58 (1988) 931-932.
 122. A.F. Williams, F. Grandjean, G.J. Long, T.A. Ulibarri and W.J. Evans, Inorg. Chem., 28 (1989) 4584-4588.
 123. G. Fu, Y. Xu, Z. Xie and C. Qian, Acta Chim. Sin., (1989)
- 431-436.
- 124. A. Zalkin, T.J. Henly and R.A. Andersen, Acta Cryst., C43 (1987) 233-236.
- 125. P.N. Hazin, C. Lakshminarayan, L.S. Brinen, J.L. Knee, J.W. Bruno, W.E. Streib and K. Folting, Inorg. Chem., 27 (1988) 1393-1400.
- 126. W.J. Evans, D.K. Drummond, J. Am. Chem. Soc., 111 (1989) 3329-3335.
- 127. A.G. Avent, M.A. Edelman, M.F. Lappert and G.A. Lawless, J. Am. Chem. Soc., 111 (1989) 3423-3425.
- 128. W.J. Evans, T.A. Ulibarri and J.W. Ziller, J. Am. Chem. Soc., 110 (1988) 6877-6879.
- 129. W.J. Evans, D.K. Drummond, L.R. Chamberlain, R.J. Doedens, S.G. Bott, H. Zhang and J.L. Atwood, J. Am. Chem. Soc., 110 (1988) 4983-4994.
- 130. W.J. Evans and D.K. Drummond, J. Am. Chem. Soc., 110 (1988) 2772-2774.
- I.P. Beletskaya, A.Z. Voskoboinikov and G.K. Magomedov, Metalloorg. Khim., 2 (1989) 808-809. 131.
- 132. P.N. Hazin, J.C. Huffman and J.W. Bruno, J.C.S., Chem. Comm., (1988) 1473-1474.

- T. P. Beletskava, A.Z. Voskoboinikov, E.B. Chuklanova, A.I. 122 Gusev and G.K. Magomedov, Metalloorg. Khim., 1 (1988) 1383-1390.
- I.P. Beletskaya, A.Z. Voskoboinikov and G.K.-I. Magomedov. 134. Dokl. Akad. Nauk SSSR, 306 (1989) 108-112.
- G.K. Magomedov, A.Z. Voskoboinikov and I.P. Beletskava, 135. Metalloorg, Khim., 2 (1989) 823-825.
- 136. G.B. Deacon, A. Dietrich, C.M. Forsyth and H. Schumann, Angew. Chem., 101 (1989) 1374-1375.
- 137. H. Schumann, I. Albrecht, M. Gallagher, E. Hahn, C. Pickardt, J. Organomet. Chem., 349 (1988) Muchmore and J. 103-115.
- 138. H. Schumann, E. Palamidis, J. Loebel and J. Pickardt,
- Organometallics, 7 (1988) 1008-1010. 139. H. Schumann, S. Nickel, J. Loebel and J. Pickardt, Organometallics, 7 (1988) 2004-2009. 140. D.J. Berg, C.J. Burns, R.A. Andersen and A. Zalkin,
- Organometallics, 8 (1989) 1865-1870. 141. D.J. Berg, R.A. Andersen and A. Zalkin, Organometallics, 7 (1988) 1858-1863.
- A. Zalkin and D.J. Berg, Acta Cryst., C44 (1988) 1488-1489. 142.
- 143. A Recknagel, D. Stalke, H.W. Roesky and F.T. Edelmann, Angew. Chem. Int. Ed., 28 (1989) 445-446.
- T.J. Marks, Inorg. Chim. Acta, 140 (1987) 1-2. 144.
- S.P. Nolan and T.J. Marks, J. Am. Chem. Soc., 111 (1989) 145. 8538-8540.
- 146. K.H. den Haan, Y. Wielstra and J.H. Teuben, Organometallics, 6 (1987) 2053-2060.
- C. Qian, D. Deng, C. Ni and Z. Zhang, Inorg. Chim. Acta, 147. 146 (1988) 129-133.
- 148. W.J. Evans, M.S. Sollberger, S.I. Khan and R. Bau, J. Am. Chem. Soc., 110 (1988) 439-446.
- 149. W.J. Evans, D.K. Drummond, T.P. Hanusa and R.J. Doedens, Organometallics, 6 (1987) 2279-2285. 150. A.B. Erofeev, B.M. Bulychev, V.K. Bel'skii and G.L.
- Soloveichik, J. Organomet. Chem., 335 (1987) 189-199. S.Y. Knjazhanski, B.M. Bulychev, V.K. Belsky and G.L. Soloveichik, J. Organomet. Chem., 327 (1987) 173-179. S.Y. Knyazhanskii, V.K. Bel'skii, B.M. Bulychev and G.L. 151.
- 152. Soloveichik, Metalloorg. Khim., 2 (1989) 570-574.
- I.P. Beletskaya, A.Z. Voskoboinikov and G.K. Magomedov, 153. Metalloorg. Khim., 2 (1989) 810-813. S.Y. Knyazhanskii, B.M. Bulychev and G.L. Soloveichik,
- 154. Metalloorg. Khim., 2 (1989) 345-350.
- C.J. Burns and R.A. Andersen, J. Am. Chem. Soc., 109 (1987) 155. 5853-5855.
- M.A. Busch, R. Harlow and P.L. Watson, Inorg. Chim. Acta., 140 (1987) 15-20. W.J. Evans, L.R. Chamberlain, T.A. Ulibarri and J.W. 156.
- 157. Ziller, J. Am. Chem. Soc., 110 (1988) 6423-6432.
- K.H. den Haan, J.L. de Boer, J.H. Teuben, W.J.J. Smeets and 158. A.L. Spek, J. Organomet. Chem., 327 (1987) 31-38.
- 159. L. Arnaudet and B. Ban, New J. Chem., 12 (1988) 201-203.
- 160. K.H. den Haan, Y. Wielstra, J.J.W. Eshuis and J.H. Teuben, J. Organomet. Chem., 323 (1987) 181-192.
- W.J. Evans, L.R. Chamberlain and J.W. Ziller, J. Am. Chem. 161. Soc., 109 (1987) 7209-7211.
- H. Yamamoto, H. Yasuda, K. Yokota, A. Nakamura, Y. Kai and 162. N. Kasai, Chem. Let., (1988) 1963-1966.

- 163. H.J. Heeres, J. Renkema, M. Booij, A. Meetsma and J.H. Teuben, Organometallics, 7 (1988) 2495-2502.
- 164. R.G. Finke, S.R. Keenan and P.L. Watson, Organometallics, 8 (1989) 263-277.
- C.J. Burns and R.A. Andersen, J. Am. Chem. Soc., 109 (1987) 165. 915-917.
- 166. W.J. Evans, T.P. Hanusa, J.H. Meadows, W.E. Hunter and J.L. Atwood, Organometallics, 6 (1987) 295-301.
- 167. K.H. den Haan, G.A. Luinstra, A. Meetsma and J.H. Teuben, Organometallics, 6 (1987) 1509-1515.
- 168. C.J. Burns and R.A. Andersen, J. Am. Chem. Soc., 109 (1987) 941-942.
- 169. W.J. Evans, R.A. Keyer, H. Zhang and J.L. Atwood, J.C.S., Chem. Comm., (1987) 837-838.
- 170. W.J. Evans and D.K. Drummond, Organometallics, 7 (1988) 797-802.
- 171. W.J. Evans and D.K. Drummond, Organometallics, 8 (1988) 573.
- 172. W.J. Evans, D.K. Drummond, R.P. Hanusa and J.M. Olofson, J. Organomet. Chem., 376 (1989) 311-320.
- 173. G.B. Deacon and D.L. Wilkinson, Inorg. Chim. Acta, 142 (1988) 155-159. Y. Li, X. Xu, L. Zhu and G. Liu, Yingyong Huaxue, 4 (1987)
- 174. 82-85.
- J. Collin, J.L. Namy, C. Beid and H.B. Kagan, Inorg. Chim. 175. Acta, 140 (1987) 29-30.
- 176. Z. Zhennan, W. Zhongzhi, D. Baohu and Y. Zhongwen, Polyhedron, 8 (1989) 17-20.
- C. Qian, Z. Xie and Y. Huang, Inorg. Chim. Acta, 139 (1987) 177. 195-199.
- 178. C. Qian, Z. Xie and Y. Huang, J. Organomet. Chem., 323 (1987) 285-294.
- C. Chen, X. Zhong, C. Qian, Z. Xie and Y. Huang, Youji 179. Huaxue, 8 (1988) 235-237.
- 180. S.J. Swamy, J. Loebel and H. Schumann, J. Organomet. Chem., 379 (1989) 51-58.
- 181. A.L. Wayda, S. Cheng and I. Mukerji, J. Organomet. Chem., 330 (1987) C17-C19.
- 182. G. Qi and Q. Shen, Yingyong Huaxue, 5 (1988) 61-63.
- 183. D.C. Eisenberg, S.A. Kinsley and A. Streitwieser, J. Am. Chem. Soc., 111 (1989) 5769-5772.
 184. A.L. Wayda, I. Mukerji, J.L. Dye and R.D. Rogers, Organometallics, 6 (1987) 1328-1332.
- 185. N.C. Burton, F.G.N. Cloke, P.B. Hitchcock, H.C. de Lemos and A.A. Sameh, J.C.S., Chem. Comm., (1989) 1462-1464.
- 186. K. Mashima and H. Takaya, Tetrahedron Lett., 30 (1989) 3697-3700.
- 187. H. Schumann, P.R. Lee and J. Loebel, Chem. Ber., 122 (1989) 1897-1900.
- 188. M.J. Manning, C.B. Knobler and M.F. Hawthorne, J. Am. Chem. Soc., 110 (1988) 4458-4459.
- 189. D.M. Schubert, M.J. Manning and M.F. Hawthorne, Phosphorus, Sulfur and Silica, 41 (1989) 253-266. 190. M. Khikmatov, V.V. Volkov, U. Mirsaidov and V.I. Budnikova,
- Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, (1988) 27-31.
- 191. V.N. Lebedev, N.F. Shemyakin, S.P. Solodovnikov and L.I. Zakharkin, Metalloorg. Khim., 1 (1988) 718.

- 192. M.A. Afonin, T.V. Dronova, A.A. Kopyrin, V.V. Korolev, A.V. Smirnov, L.N. Lazarev and V.N. Romanovskii, Radiokhim., 31
- (1989) 79-83. 193. R.K. Sharma and C.P. Sharma, J. Indian Chem. Soc., 64 (1987) 506-507.
- 194. M. Chen, G. Wu, W. Wu, S. Zhuang and Z. Huang,
- Organometallics, 7 (1988) 802-806. 195. A. Zhou, Z. Wu, F. Zhao and X. Song, Youji Huaxue, 9 (1989) 230-232.
- 196. F. Nief and F. Mathey, J.C.S., Chem. Comm., (1989) 800-801.
- 197. J.C. Green, D. Hohl and N. Rösch, Organometallics, 6 (1987) 712-720.
- 198. Z. Li, W. Chen, G. Xu and J. Ren, Wuji Huaxue, 3 (1987) 111-114.
- 199. X. Li, X. Feng, Y. Xu, H. Wang, P. Sun and J. Shi, Kexue Tongbao, 32 (1987) 1259-1262.
- 200. C.W. Bauschlicher, Jr., S.R. Langhoff, H. Partridge and L.A. Barnes, J. Chem. Phys., 91 (1989) 2399-2411.
- 201. F.A. Cotton and W. Schwotzer, Organometallics, 6 (1987) 1275-1280.
- 202. B. Fan, Q. Shen and Y. Lin, Youji Huaxue, 9 (1989) 414-417. 203. J.G. Brennan, F.G.N. Cloke, A.A. Sameh and A. Zalkin,
- J.C.S., Chem. Comm., (1987) 1668-1669. 204. F.G.N. Cloke, K.A.E. Courtney, A.A. Sameh and A.C. Swain, Polyhedron, 8 (1989) 1641-1648.
- 205. D.M. Anderson, F.G.N. Cloke, P.A. Cox, N. Edelstein, J.C. Green, T. Pang, A.A. Sameh and G. Shalimoff, J.C.S., Chem. Comm., (1989) 53-55.
- 206. B. Fan, Q. Shen and Y. Lin, J. Organomet. Chem., 377 (1989) 51-58.
- 207. B. Fan, Q. Shen and Y. Lin, J. Organomet. Chem., 376 (1989) 61-66.
- 208. M.N. Bochkarev, A.A. Trifonov, V.K. Cherkasov and G.A. Razuvaev, Zh. Obshch. Khim., 58 (1988) 719-720.
- M.N. Bochkarev, A.A. Trifonov, V.K. Cherkasov and G.A. Razuvaev, Metalloorg. Khim., 1 (1988) 392-396.
 M.N. Bochkarev, E.A. Fedorov, I.M. Penyagina, O.A. Vasina, S.Y. Khorshev and A.V. Protchenko, Metalloorg. Khim., 2 (1989) 703.
- E.A. Fedorova and O.A. Vasina, Metalloorg. Khim., 2 (1989) 211. 392-394.
- 212. M.N. Bochkarev, I.M. Penyagina, L.N. Zakharov, Y.F. Rad'kov, E.A. Fedorova, S.Y. Khorshev and Y.T. Struchkov, J. Organomet. Chem., 378 (1989) 363-373.
- 213. M.N. Bochkarev, E.A. Fedorova, I.M. Penyagina, O.A. Vasina, A.V. Protchenko and S.Y. Khorshev, Metalloorg. Khim., 2 (1989) 1317-1319.
- 214. Y.F. Rad'kov, V.V. Khramenkov, L.N. Zakharov, Y.T. Struchkov, S.Y. Khorshev and M.N. Bochkarev, Metalloorg. Khim., 2 (1989) 1422-1427.
- 215. A.A. Trifonov, A.V. Protchenko, V.K. Gherkasov and M.N. Bochkarev, Metalloorg. Khim., 2 (1989) 471.
- 216. T.A. Basalgina, G.S. Kalinina and M.N. Bochkarev, Metalloorg. Khim., 2 (1989) 1142-1145.
- 217. M.N. Bochkarev, A.A. Trifonov, E.A. Fedorova, N.S. Emelyanova, T.A. Basalgina, G.S. Kalinina and G.A. Razuvaev, J. Organomet. Chem., 372 (1989) 217-224.
- 218. T. Arakawa, S. Shimada, G.-Y. Adachi and J. Shiokawa, Inorg. Chim. Acta, 145 (1988) 327-330.

218

- 219. Z. Hou, Y. Fujiwara, T. Jintoku, N. Mine, K. Yokoo and H. Taniguchi, J. Org. Chem., 52 (1987) 3524-3528.
- G.B. Deacon, C.M. Forsyth and R.H. Newham, Polyhedron, 6 220. (1987) 1143-1145.
- 221. L.F. Rybakova, O.P. Syutkina, A.V. Garbar and E.S. Petrov, Zh. Obshch. Khim., 58 (1988) 1053-1056.
- 222. O.P. Syutkina, L.R. Rybakova and E.S. Petrov, Metalloorg. Khim., 2 (1989) 1146-1149.
- T.A. Starostina, R.R. Shifrina, L.F. Rybakova and E.S. 223. Petrov, Zh. Obshch. Khim., 57 (1987) 2402.
- 224. A.B. Sigalov and I.P. Beletskaya, Izv. Akad. Nauk SSSR,
- Ser. Khich., 2 (1988) 445-450.
 225. G.Z. Suleimanov, Y.S. Bogachev, P.V. Petrovskii, E.I. Kazimirchuk, I.L. Zhuravleva, R.Y. Mekhdiev, T.A. Agdamskii, N.E. Kolobova and I.P. Beletskaya, Zh. Organich. Khim., 25 (1989) 507-510.
- 226. N.E. Kolobova, E.I. Kazimirchuk, T.A. Agdamskii, Z.M. Umudova, V.N. Khandozhko, G.Z. Suleimanov, P.V. Petrovskii and I.P. Beletskaya, Zh. Organich. Khim., 23 (1987) 1699-1702.
- 227. R. Cai, J. Wei and S. He, Fudan Xuebao, Ziran Kexueban, 28 (1989) 111-112.
- 228. N. Hu, L.Gong, Z. Jin and W. Chen, Wuji Huaxue Xuebao, 5 (1989) 107-111.
- 229. J. Sieler, A. Simon, K. Peters, R. Taube and M. Geitner, J. Organomet. Chem., 362 (1989) 297-303.
- 230. L.N. Bochkarev, S.B. Shustov, T.V. Guseva and S.F. Shil'tsov, Zh. Obshch. Khim., 58 (1988) 923-924. V.A. Yakovlev, I.A. Oreshkin and B.A. Dolgoplosk,
- 231.
- 232.
- Metalloorg. Khim., 2 (1989) 93-101. S.B. Gol'shtein, V.A. Yakovlev, A.I. Mikaya and B.A. Dolgoplosk, Dokl. Akad. Nauk SSSR, 309 (1989) 1129-1131. T.A. Starostina, L.F. Rybakova and E.S. Petrov, Metalloorg. 233. Khim., 2 (1989) 915-918.
- J.B. Schilling and J.L. Beauchamp, J. Am. Chem. Soc., 110 234. (1988) 15-24.
- 235. L.S. Sunderlin and P.B. Armentrout, J. Am. Chem. Soc., 111 (1989) 3845-3855.
- 236. Y. Huang and B.S. Freiser, J. Am. Chem. Soc., 110 (1988) 387-392.
- 237. R.L. Hettich and B.S. Freiser, J. Am. Chem. Soc., 109 (1987) 3543-3548.
- 238. M.P. Andrews and A.L. Wayda, Organometallics, 7 (1988) 743-749.
- 239. L. Saussine, H. Olivier, D. Commereuc and Y. Chauvin, New J. Chem., 12 (1988) 13-14.
- 240. S.Q. Sun and W.Q. Chen, Kidorui, 14 (1989) 170-171.
- C. Shan, Y. Lin, S. Jin, J. Ouyang, Y. Fan, G. Yang and J. 241. Yu, Huaxue Xuebao, 45 (1987) 949-954. J. Hu, E. Pan, Y. Na and Q. Shen, Zhongguo Xitu Xuebao, 5
- 242. (1987) 75-76.

- 243. K.-H. Thiele, K. Unverhau, M. Geitner and K. Jacob, Z. Anorg. Allg. Chem., 548 (1987) 175-179.
 244. S. Li, X. Yang, Y. Sun, P. Li, X. Wang and X. Zhou, Gaodeng Xuexiao Huaxue Xuebao, 9 (1988) 1242-1245.
- P.B. Hitchcock, M.F. Lappert, R.G. Smith, R.A. Bartlett and P.P. Power, J.C.S., Chem. Comm., (1988) 1007-1008.
 J.L. Atwood, M.F. Lappert, R.G. Smith and H. Zhang, J.C.S.,
- Chem. Comm., (1988) 1308-1309.

- 247. P.B. Hitchcock, M.F. Lappert and R.G. Smith, J.C.S., Chem. Comm., (1989) 369-371.
- X. Bao and W. Chen, Chin. Sci. Bull., 34 (1989) 207-211. 248.
- Z. Huang, M. Chen, W. Qiu and W. Wu, Inorg. Chim. Acta, 139 249. (1987) 203-207.
- W. Qiu, S. Zhuang, Z. Huang and W. Wu, Fudan Xuebao Ziran 250. Kexueban, 26 (1987) 113-117.
- 251. M. Brunelli, S. Poggio, U. Pedretti and G. Lugli, Inorg. Chim. Acta., 131 (1987) 281-285.
- 252. S.P. Kuleshov, R.G. Bulgakov, G.A. Tostikov and V.P. Kazakov, Izv. Akad. Nauk SSSR, Ser. Khim., (1989) 1207-1208.
- 253. M.R. Leonov, V.A. Il'yushenkova, V.M. Fomin and N.V. Il'yushenkova, Radiokhim., 30 (1988) 324-329.
- 254. D.C. Sonnenberger and J.G. Gaudiello, Inorg. Chem., 27 (1988) 2747-2748.
- 255. G. Adrian, Inorg. Chim. Acta, 139 (1987) 323-325.
- 256. G. Adrian, Kernf. Karls., (1988) 4356.
- 257. P. Pyykkö, L.J. Laakkonen and K. Tatsumi, Inorg. Chem., 28 (1989) 1801-1805.
- 258. A. Zalkin, J.G. Brennan and R.A. Andersen, Acta Cryst., C44 (1988) 2104-2106.
- P.C. Blake, M.F. Lappert, R.G. Taylor, J.L. Atwood and H. Zhang, Inorg. Chim. Acta, 139 (1987) 13-20.
 W.K. Kot, G.V. Shalimoff and N.M. Edelstein, J. Am. Chem.
- Soc., 110 (1988) 986-987. 261. B.E. Bursten, L.F. Rhodes and R.J. Strittmatter, J. Am.
- Chem. Soc., 111 (1989) 2756-2758.
- 262. B.E. Bursten, L.F. Rhodes and R.J. Strittmatter, J. Am. Chem. Soc., 111 (1989) 2758-2766. 263. G.B. Deacon and T.D. Tuong, Polyhedron, 7 (1988) 249-250. 264. A. Delapalme, P. Schweiss, M.R. Spirlet, J. Rebizant and B.
- Kanellakopulos, Mater. Sci. Forum, (1988) 27-28.
- 265. M.R. Spirlet, J. Rebizant, C. Apostolidis, G.D. Andreetti and B. Kanellakopulos, Acta Cryst., C45 (1989) 739-741.
- 266. C.C. Chang, N.K. Sung-Yu, C.W. Kang and C.T. Chang, Inorg. Chim. Acta, 129 (1987) 119-121.
- 267. H.-D. Amberger, H. Reddmann and N. Edelstein, Inorg. Chim. Acta, 141 (1988) 313-321.
- 268. B.R. McGarvey and S. Nagy, Inorg. Chem., 26 (1987) 4198-4203.
- 269. B.R. McGarvey and S. Nagy, Inorg. Chem., 139 (1987) 319-321.
- 270. G. Adrian, H. Appel, R. Bohlander, H. Haffner and B. Kanellakopulos, Hyperfine Interact., 40 (1988) 275-278.
- 271. V.I. Spitsyn and G.V. Ionova, Dokl. Akad. Nauk SSSR, 292 (1987) 921-923.
- 272. J.F. Le Marechal, C. Villiers, P. Charpin, M. Nierlich, M. Lance, J. Vigner and M. Ephritikhine, J. Organomet. Chem., 279 (1989) 259-269.
- V.I. Tel'noi, I.B. Rabinovich, V.N. Larina, R.M. Leonov and G.V. Solov'eva, Radiokhim., 31 (1989) 38-40. 273.
- 274. P. Zanella, F. Ossola, M. Porchia, G. Rossetto, A.C. Villa and C. Guastini, J. Organomet. Chem., 323 (1987) 295-303.
- 275. M. Porchia, N. Brianese, F. Ossola, G. Rossetto and P. Zanella, J.C.S., Dalton Trans., (1987) 691-694.
- 276. P. Zanella, N. Brianese, U. Casellato, F. Ossola, M. Porchia, G. Rossetto and R. Graziani, Inorg. Chim. Acta, 144 (1988) 129-134.

- 277. J.-F. Le Marechal, E. Bulot, D. Baudry, M. Ephritikhine, D. Hauchard and R. Godard, J. Organomet. Chem., 354 (1988) C17-C18.
- 278. J.-F. Le Marechal, C. Villiers, P. Charpin, M. Lance, M. Nierlich, J. Vigner and M. Ephritikhine, J.C.S., Chem. Comm., (1989) 308-310.
- 279. R.K. Rosen and A. Zalkin, Acta Cryst., C45 (1989) 1139-1141.
- 280. J. Rebizant, C. Apostolidis, M.R. Spirlet and B. Kanellakopulos, Inorg. Chim. Acta, 139 (1987) 209-210.
- 281. A. Zalkin and J.G. Brennan, Acta Cryst., C43 (1987) 1919-1922.
- 282. R.E. Cramer, F. Edelmann, A.L. Mori, S. Roth, J.W. Gilje, K. Tatsumi and A. Nakamura, Organometallics, 7 (1988) 841-849.
- 283. R.E. Cramer, U. Engelhardt, K.T. Higa and J.W. Gilje, Organometallics, 6 (1987) 41-45.
- 284. H. Aslan, K. Yunlu, R.D. Fischer, G. Bombieri and F. Benetollo, J. Organomet. Chem., 254 (1988) 63-76.
- 285. G. Rossetto, N. Brianese, F. Ossola, M. Porchia, P. Zanella and S. Sostero, Inorg. Chim. Acta, 132 (1987) 275-278.
- 286. H.-D. Amberger, H. Reddmann, G. Shalimoff and N.M.
- Edelstein, Inorg. Chim. Acta, 139 (1987) 335-337. 287. F. Knosel, H.W. Roesky and F. Edelmann, Inorg. Chim. Acta, 139 (1987) 187-188.
- 288. R.E. Cramer, J.H. Jeong and J.W. Gilje, Organometallics, 6 (1987) 2010-2012.
- 289. A. Zalkin, J.G. Brennan and R.A. Andersen, Acta Cryst., C43 (1987) 1706-1708.
- 290. M. Porchia, N. Brianese, U. Casellato, F. Ossola, G. Rossetto, P. Zanella and R. Graziani, J.C.S., Dalton Trans., (1989) 677-681.
- 291. R.S. Sternal and T.J. Marks, Organometallics, 6 (1987) 2621-2623.
- 292. M. Porchia, F. Ossola, G. Rossetto, P. Zanella and N. Brianese, J.C.S., Chem. Comm., (1987) 550-551.
- L.E. Schock, A.M. Seyam, M. Sabat and T.J. Marks, 293. Polyhedron, 7 (1988) 1517-1529.
- 294. S.D. Stults, R.A. Andersen and A. Zalkin, J. Am. Chem. Soc., 111 (1989) 4507-4508.
- 295. H. Aslan, J. Forster, K. Yunlu and R.D. Fischer, J. Organomet. Chem., 355 (1988) 79-88.
- 296. M. Foyentin, G. Folcher and M. Ephritikhine, J.C.S., Chem. Comm., (1987) 494-495.
- 297. M. Foyentin, G. Folcher and M. Ephritikhine, J. Organomet. Chem., 335 (1987) 201-206.
- 298. P. Zanella, N. Brianese, U. Casellato, F. Ossola, M. Porchia, G. Rossetto and R. Graziani, J.C.S., Dalton Trans., (1987) 2039-2043.
- 299. R.E. Cramer, M.A. Bruck, F. Edelmann, D. Afzal, J.W. Gilje and H. Schmidbaur, Chem. Ber., 121 (1988) 417-420.
- 300. J.W. Gilje and R.E. Cramer, Inorg. Chim. Acta., 139 (1987) 177-181,
- 301. M.R. Leonov and G.V. Solov'eva, Zh. Obshch. Khim., 57 (1987) 2522-2529.
- 302. M.R. Leonov, I.I. Grinval'd, G.V. Solov'eva, V.A. Il'yushenkov and N.K. Rudnevskii, Radiokhim., 29 (1987) 107-109.

- 222 303. L. Xing-Fu and G. Ao-Ling, Inorg. Chim. Acta, 134 (1987) 143-153. 304. N.I. Gramoteeva and M.P. Leonov, Metalloorg. Khim., 2 (1989) 1430. 305. A. Zalkin, A.L. Stuart and R.A. Andersen, Acta Cryst., C44 (1988) 2106-2108. 306. P.C. Blake, M.F. Lappert, J.L. Atwood and H. Zhang, J.C.S., Chem. Comm., (1988) 1436-1438. 307. P.C. Blake, E. Hey, M.F. Lappert, J.L. Atwood and H. Zhang, J. Organomet. Chem., 353 (1988) 307-314. 308. A.M. Koulkès-Pujo, J.F. Le Marechal, A. Dormond and G. Folcher, Inorg. Chem., 26 (1987) 3171-3175. 309. A.L. Arduini, J. Maliot, J. Takats, E. Ciliberto, I. Fragala and P. Zanella, J. Organomet. Chem., 326 (1987) 49-
- 58. 310. T.J. Marks, Inorg. Chim. Acta, 140 (1987) 1-2.
- 311. R.S. Sternal, M. Sabat and T.J. Marks, J. Am. Chem. Soc., 109 (1987) 7920-7921.
- 312. R.E. Cramer, S. Roth and J.W. Gilje, Organometallics, 8 (1989) 2327-2330.
- 313. J.G. Brennan, R.A. Andersen and A. Zalkin, J. Am. Chem. Soc., 110 (1988) 4554-4558.
- 314. A. Zalkin and S.M. Beshouri, Acta Cryst., C45 (1989) 1219-1221.
- 315. K. Tatsumi and A. Nakamura, Inorg. Chim. Acta, 139 (1987) 247~251.
- 316. A. Zalkin and S.M. Beshouri, Acta Cryst., C44 (1988) 1826-1827.
- 317. R.E. Cramer, M.A. Bruck and J.W. Gilje, Organometallics, 7 (1988) 1465-1469.
- 318. Z. Lin, C.P. Brock and T.J. Marks, Inorg. Chim. Acta, 141 (1988) 145-149.
- 319. A. Zalkin, J.G. Brennan and R.A. Andersen, Acta Cryst., C43 (1987) 418-420.
- 320. A. Zalkin, J.G. Brennan and R.A. Andersen, Acta Cryst., C43 (1987) 421-423.
- 321. B.E. Bursten and K.J. Novo-Gradac, J. Am. Chem. Soc., 109 (1987) 904-905.
- 322. K. Tatsumi and A. Nakamura, Organometallics, 6 (1987) 427-428.
- 323. K. Tatsumi and A. Nakamura, J. Am. Chem. Soc., 109 (1987) 3195-3206.
- 324. Z. Lin and T.J. Marks, J. Am. Chem. Soc., 109 (1987) 7979-7985.
- 325. G.M. Smith, M. Sabat and T.J. Marks, J. Am. Chem. Soc., 109 (1987) 1854-1856.
- 326. D. Hedden and T.J. Marks, J. Am. Chem. Soc., 110 (1988) 1647-1649.
- 327. Z. Lin, J-F. Le Marechal, M. Sabat and T.J. Marks, J. Am. Chem. Soc., 109 (1987) 4127-4129. 328. R.E. Cramer, S. Roth, F. Edelmann, M.A. Bruck, K.C. Cohn
- and J.W. Gilje, Organometallics, 8 (1989) 1192-1199.
- 329. S.M. Beshouri and A. Zalkin, Acta Cryst., C45 (1989) 1221-1222.
- 330. A. Zalkin and S.M. Beshouri, Acta Cryst., C45 (1989) 1080-1082.
- 331. C. Aitken, J.-P. Barry, F. Gauvin, J.F. Harrod, A. Malek and D. Rousseau, Organometallics, 8 (1989) 1732-1736.

- 332. C.M. Fendrick, L.D. Schertz, V.W. Day and T.J. Marks, Organometallics, 7 (1988) 1828-1838.
- 333. A. Dormond, A. Aaliti and C. Moise, J. Org. Chem., 53 (1988) 1034-1037.
- M.A. Edelman, M.F. Lappert, J.L. Atwood and H. Zhang, Inorg. Chim. Acta, 139 (1987) 185-186. 334.
- 335. D.L. Clark, A.P. Sattelberger, S.G. Bott and R.N. Vrtis, Inorg. Chem., 28 (1989) 1772-1773. 336. T.M. Gilbert, R.R. Ryan and A.P. Sattelberger,
- Organometallics, 8 (1989) 857-859.
- 337. R.R. Ryan, K.V. Salazar, N.N. Sauer and J.M. Ritchey, Inorg. Chim. Acta, 162 (1989) 221-225.
- 338. D. Baudry and M. Ephritikhine, J. Organomet. Chem., 349 (1988) 123-130.
- 339. D. Baudry, P. Dorion and M. Ephritikhine, J. Organomet. Chem., 356 (1988) 165-171.
- 340. C. Baudin, P. Charpin, M. Ephritikhine, M. Lance, M. Nierlich and J. Vigner, J. Organomet. Chem., 345 (1988) 263-274.
- 341. N. Marques, J. Marcalo, T. Almeida, J.M. Carretas, A. Pires de Matos, K.W. Bagnall and J. Takats, Inorg. Chim. Acta, 139 (1987) 83-85.
- N. Brianese, U. Casellato, F. Ossola, M. Porchia, G. Rossetto, P. Zanella and R. Graziani, J. Organomet. Chem., 342. 365 (1989) 223-232.
- D. Baudry, E. Bulot, P. Charpin, M. Ephritikhine, M. Lance, 343. M. Nierlich and J. Vigner, J. Organomet. Chem., 371 (1989) 163-174.
- M.R. Spirlet, J. Rebizant and J. Goffart, Acta Cryst., C43 344. (1987) 354-355.
- 345. J. Rebizant, M.R. Spirlet, G. Van den Bossche and J. Goffart, Acta Cryst., C44 (1988) 1710-1712.
- 346. J. Rebizant, M.R. Spirlet, S. Bettonville and J. Goffart, Acta Cryst., C45 (1989) 1509-1511.
- 347. W. Beeckman and J. Goffart, Lanth. Act. Res., 2 (1988) 187-200.
- 348. J. Goffart and S. Bettonville, J. Organomet. Chem., 361 (1989) 17-19.
- 349. S. Bettonville, J.Goffart and J. Fuger, J. Organomet. Chem., 377 (1989) 59-67.
- 350. P.M. Boerrigter, E.J. Baerends and J.G. Snijders, Chem. Phys., 122 (1988) 357-374. 351. A.H.H. Chang and R.M. Pitzer, J. Am. Chem. Soc., 111 (1989)
- 2500-2507.
- 352. N.T. Kuznetsov, V.A. Mitin, K.V. Kir'yanov, V.G. Sevast'yanov and V.A. Bogdanov, Radiokhim., 29 (1987) 109-111.
- 353. M.H. Lyttle, A. Streitwieser and M.J. Miller, J. Org. Chem., 54 (1989) 2331-2335.
- 354. N.C. Burton, F.G.N. Cloke, P.B. Hitchcock, H.C. de Lemos and A.A. Sameh, J.C.S., Chem. Comm., (1989) 1462-1464.
- 355. T.M. Gilbert, R.R. Ryan and A.P. Sattelberger,
- Organometallics, 7 (1988) 2514-2518.
- 356. W.G. Van der Sluys, C.J. Burns, J.C. Huffman and A.P.
- Sattelberger, J. Am. Chem. Soc., 110 (1988) 5924-5925. 357. D. Baudry, E. Bulot and M. Ephritikhine, J.C.S., Chem. Comm., (1988) 1369-1370.

- 224
- 358. D. Baudry, E. Bulot, P. Charpin, M. Ephritikhine, M. Lance, M. Nierlich and J. Vigner, J. Organomet. Chem., 371 (1989) 155-162.
- 359. D. Baudry, E. Bulot and M. Ephritikhine, J.C.S., Chem. Comm., (1989) 1316-1317.
- 360. J.L. Stewart and R.A. Andersen, J.C.S., Chem. Comm., (1987) 1846-1847.
- 361. W.G. Van der Sluys, C.J. Burns and A.P. Sattelberger, Organometallics, 8 (1989) 855-857. 362. S.M. Beshouri, P.E. Fanwick, I.P. Rothwell and J.C. Huffman, Organometallics, 6 (1987) 2498-2502.
- 363. C. Baudin and M. Ephritikhine, J. Organomet. Chem., 364 (1989) C1-C2.
- 364. S.A. Toropov, V.K. Vasil'ev and V.N. Sokolov, Radiokhim., 29 (1987) 150-154. 365. A. Dormond, A. Aaliti, A. El Bouadili and C. Moise, Inorg.
- Chim. Acta, 139 (1987) 171-176. 366. A. Dormond, A. El Bouadili and C. Moise, J. Org. Chem., 54
- (1989) 3747-3748.
- 367. A. Dormond, A. El Bouadili and C. Moise, J. Org. Chem., 52 (1987) 688-689.
- 368. A. Dormond, C. Moise, A. El Bouadili and H. Bitar, J. Organomet. Chem., 371 (1989) 176-185. 369. A. Dormond, A. El Bouadili and C. Moise, J. Organomet.
- Chem., 369 (1989) 171-185.
- 370. A. Dormond, A. Aaliti, A. El Bouadili and C. Moise, J. Organomet. Chem., 329 (1987) 187-199.